首页|基于优化蚁群算法的物流中心拣货路径优化研究

基于优化蚁群算法的物流中心拣货路径优化研究

扫码查看
为解决当前物流企业中普遍存在盈利能力差、利润空间小等问题,以M物流公司为研究对象,在作业成本法与精准化成本管理的基础上引入聚类蚁群算法优化X省的布局来降低成本,并实验分析其有效性.实验结果表明,b值为1时物流总成本最低,为1.759×108元;而z值、ρ值以及a值分别取值1、0.48、2.3时物流总成本最低.在四个参数取值下利用聚类蚁群算法优化后的物流总成本降低至1.81×108元,同时单个网点的平均利润也优于对比算法.综合来看,研究提出的省外成本管理改进策略具备有效性,可以有效管控物流成本支出.
Research on Cost Management of Intelligent Logistics Enterprises Based on Digital Economy
To solve the common problems of poor profitability and small profit margins in current logistics enterprises,Logistics Com-pany M is taken as the research object.Based on activity-based costing and precision cost management,clustering ant colony algorithm is introduced to optimize its layout in X province to reduce costs,and its effectiveness is experimentally analyzed.The experimental re-sults show that when the value of b is 1,the total logistics cost is the lowest,which is 1.759 × 108 yuan.And the Z value,ρ value and A value are 1,0.48 and 2.3 respectively.Therefore,the total logistics cost optimized using clustering ant colony algorithm with four par-ameter values was reduced to 1.81×108 yuan,and the average profit of a single branch was also better than the comparative algorithm.Overall,the cost management improvement strategies proposed in the study are effective and can effectively control logistics cost ex-penditures.

Digital economyIntelligent logistics enterprisesCost managementClustering Ant Colony Algorithm

何堃

展开 >

滁州职业技术学院商学院,安徽滁州 239000

数字经济 智能物流企业 成本管理 聚类蚁群算法

2024

遵义师范学院学报
遵义师范学院

遵义师范学院学报

影响因子:0.165
ISSN:1009-3583
年,卷(期):2024.26(6)