首页|双子群自适应变异多目标粒子群算法

双子群自适应变异多目标粒子群算法

扫码查看
多目标粒子群优化算法因其强大的搜索能力和简单的实现方式受到广泛关注,然而它在收敛性和多样性之间常常存在不平衡的问题.为了解决这一问题,作者提出了一种双子群自适应变异多目标粒子群算法(BAMOPSO),旨在更好地平衡收敛性和多样性.首先,采用一种新颖的双子群初始化方法,使粒子在目标空间中分布更均匀,从而提高算法的多样性.其次,设计了一种新的自适应变异策略,依据进化过程中目标函数值的变化来提升收敛性.最后,通过将BAMOPSO算法与六个经典多目标优化算法在十五个基准测试函数上进行比较实验,验证了该算法在平衡收敛性和多样性方面的显著提升.
Binary Group Adaptive Variation Multi-objective Particle Swarm Optimization Algorithm
Multi-objective particle swarm optimization has been widely concerned because of its powerful search ability and simple im-plementation,but it often has an imbalance between convergence and diversity.To solve this problem,a binary group adaptive variation multi-objective particle swarm optimization(BAMOPSO)algorithm is proposed to better balance convergence and diversity.Firstly,a novel binary group initialization method is used to make the particles more evenly distributed in the target space,thus improving the di-versity of the algorithm.Secondly,a new adaptive variation strategy is designed to improve the convergence according to the change of the objective function value during evolution.Finally,by comparing BAMOPSO algorithm with six classical multi-objective optimiza-tion algorithms on 15 benchmark functions,it is verified that the algorithm has a significant improvement in balance convergence and diversity.

multi-objective particle swarm optimization algorithmbinary groupadaptive variation

陈建杰、刘衍民、骆怡

展开 >

贵州民族大学数据科学与信息工程学院,贵州贵阳 550025

遵义师范学院数学学院,贵州遵义 563006

贵州大学数学与统计学院,贵州贵阳 550025

多目标粒子群优化算法 双子群 自适应变异

2024

遵义师范学院学报
遵义师范学院

遵义师范学院学报

影响因子:0.165
ISSN:1009-3583
年,卷(期):2024.26(6)