首页|基于遗传算法的光伏系统发电量预测

基于遗传算法的光伏系统发电量预测

扫码查看
为准确预测光伏系统的发电量,构建了用遗传算法优化的BP神经网络发电量短期预测模型(简称GA-BP模型).通过遗传算法的迭代,对BP神经网络的权值和阈值进行优化,以实现对算法的改进.对所选择国能日新光伏系统预测大赛的数据进行预处理、归一化,并将数据输入GA-BP模型,进行了实验.对比实验说明,GA-BP模型不管是在预测结果上还是在模型稳定性上都明显优于BP神经网络模型.
Photovoltaic power generation forecasting using genetic algorithm
This study proposes a Genetic Algorithm-optimized BP(GA-BP)neural network model for accurate short-term forecasting of photovoltaic(PV)power generation.Initially,the genetic algo-rithm iteratively optimizes the weights and thresholds of the BP neural network to identify optimal values,thereby enhancing the performance of the algorithm.Subsequently,preprocessing and nor-malization are applied to selected PV prediction data before inputting them into the model.Experi-mental results indicate that the GA-BP model outperforms the conventional BP model in terms of pre-dictive accuracy and stability.

photovoltaic power generationpower generation predictiongenetic algorithmBP neu-ral network

李燕斌、魏婷婷、贾恒、李淑新

展开 >

中原工学院自动化与电气工程学院,河南郑州 450007

光伏发电 发电量预测 遗传算法 BP神经网络

2024

中原工学院学报
中原工学院

中原工学院学报

影响因子:0.23
ISSN:1671-6906
年,卷(期):2024.35(2)
  • 6