首页|一种基于改进YOLOv8网络模型的安全帽佩戴检测算法

一种基于改进YOLOv8网络模型的安全帽佩戴检测算法

扫码查看
为了实现对特定场所人员佩戴安全帽行为的自动检测,提出了一种基于改进YOLOv8网络模型的检测算法.采用FasterNet思想改进YOLOv8网络模型的C2f结构,减少了初始模型的参数量和运算量;在检测头位置添加EMA机制模块,提升了模型的特征检测性能;引入SAConv模块和ASFF算法改造检测头结构,对不同尺度的特征信息进行自适应融合,提升了初始模型的特征提取能力.消融实验和对比实验证明,所提出算法的检测精度更高,检测速度更快,能够满足实际生产对安全帽佩戴检测的需求.
Algorithm for detecting wearing behavior of safety helmet based on improved YOLOv8
To achieve automatic detection of workers wearing safety helmets in industrial settings,a detection algorithm based on improved YOLOv8 network model is proposed.By adopting the Faster-Net approach,we refined the C2f structure in the original YOLOv8 model,significantly reducing the model's parameter count and computational requirements.Additionally,we incorporated an EMA at-tention mechanism into the detection head to enhance the model's feature detection capabilities.Fur-thermore,we introduced SAConv and ASFF algorithms into the detection head to facilitate adaptive fusion of feature information across different scales,thereby improving the feature extraction capabili-ties of the refined model.Through ablation and comparative experiments,we demonstrate that the improved algorithm offers higher detection accuracy and faster detection speed,validating its feasibili-ty and suitability for practical applications in monitoring safety helmets wearing in industrial settings.

detection algorithmYOLOv8detecting wearing behavior of safety helmetFasterNetattention mechanism

王东升、聂建军

展开 >

中原工学院 智能机电工程学院,河南 郑州 450007

检测算法 YOLOv8 安全帽佩戴检测 FasterNet 注意力机制

2024

中原工学院学报
中原工学院

中原工学院学报

影响因子:0.23
ISSN:1671-6906
年,卷(期):2024.35(5)