首页|基于改进神经网络的长丝卷装外观缺陷识别

基于改进神经网络的长丝卷装外观缺陷识别

扫码查看
化学纤维产业是传统支柱产业,在长丝生产过程中,环境和生产工艺等因素容易导致长丝卷装外观出现缺陷,其在一定程度上影响织造效率和长丝质量.卷装外观大多以人工方式识别,存在速度慢且准确率低的问题.由此提出SCNet模型,一个融合注意力机制模块SimAm的ConvNeXt卷积神经网络模型,该模块增加模型对于缺陷特征提取能力的同时保持了模型轻量化.同时在试验过程中,使用数据增强和迁移学习,丰富样本多样性和加快模型收敛速度.试验表明:SCNet模型对缺陷卷装外观识别精度达96.6%,该模型对正常及3类常见长丝卷装外观缺陷具有较好分类效果,具有良好的通用性.
Defects Recognition in Filament Package Based on Improved Neural Network
The chemical fiber industry is a traditional pillar industry in China.In the process of filament production,the environment and production technology and other factors can easily lead to defects in the appearance of filament winding,which affects weaving efficiency and filament quality to some extent.Most of the appearance of filament winding is identified manually,with the problem of slow speed and low accuracy.Thus it proposes the SCNet model,a ConvNeXt convolutional neural network model that integrates the attention mechanism SimAm,which increases the model's ability to extract defect features while maintaining its lightness.During the experimental process,data augmentation and transfer learning are used to enrich the diversity of samples and accelerate the convergence speed of the model.The experiment shows that the SCNet model has a recognition accuracy of 96.6%for the appearance of defective filament package.The model has good classification performance for normal and three common types of filament package appearance defects with good universality.

Appearance of Filament Roll PackagingDefect DetectionDeep LearningConvNeXtSimAmSCNet

翁伟杰、崔丽娜、邱夷平、夏克尔·赛塔尔

展开 >

新疆大学纺织与服装学院,新疆 乌鲁木齐 830047

泉州师范学院 纺织与服装学院,福建 泉州 362000

东华大学纺织学院,上海 200000

长丝卷装外观 缺陷检测 深度学习 ConvNeXt SimAm SCNet

2024

针织工业
天津市针织技术研究所 中国纺织信息中心

针织工业

北大核心
影响因子:0.262
ISSN:1000-4033
年,卷(期):2024.(12)