首页|Weakly supervised retinal vessel segmentation algorithm without groundtruth
Weakly supervised retinal vessel segmentation algorithm without groundtruth
扫码查看
点击上方二维码区域,可以放大扫码查看
原文链接
NETL
NSTL
Inst Engineering Technology-Iet
In the current image processing field, medical image segmentation needs a lot of groundtruths, and the process of making these groundtruths is time-consuming and laborious. Thus, a novel retinal vessel segmentation algorithm without groundtruth is proposed in this Letter. The hierarchical clustering algorithm is first used to binary classify vessel and non-vessel pixels. Then classification results based on DRIVE databases are used as pseudo groundtruths to train the neural networks and transfer learning is considered for subsequent processing. Next the trained network is used as the feature extraction tool, by calculating and comparing the difference of image features between the target domain data (DRIVE database) and the source domain data (STARE, CHASE DB1, and HRF databases) extracted from the network. The data required for training is expanded based on semi-supervised clustering in this image feature space, finally the deep neural network is further fine-tuned. Experiments on the publicly available fundus image dataset DRIVE demonstrate that the proposed method outperforms many other state-of-the-art weakly supervised and unsupervised methods.
Lu, Zheng、Chen, Dali、Xue, Dingyu
展开 >
Northeastern Univ, Coll Informat Sci & Engn, Shenyang, Peoples R China