首页|Predicting the responses of subalpine forest landscape dynamics to climate change on the eastern Tibetan Plateau

Predicting the responses of subalpine forest landscape dynamics to climate change on the eastern Tibetan Plateau

扫码查看
Subalpine vegetation across the Tibetan Plateau is globally one of the most sensitive to climate change. However, the potential landscape-scale effects of climate change on subalpine forest dynamics remain largely unexplored. Here, we used a forest landscape model (LANDIS-II) coupled with a forest ecosystem process model (PnET-II) to simulate forest dynamics under future climate change in Jiuzhaigou National Nature Reserve in the eastern subalpine region of the Tibetan Plateau. We examined changes in the composition, distribution and aboveground biomass of cold temperate coniferous forests, temperate coniferous forests, deciduous broad-leaved forests and redwood forest under four climate change scenarios (RCP2.6, RCP4.5, RCP8.5 and the current climate) from 2016 to 2096. Our model predicts that by 2096, (i) cold temperate coniferous forests will expand and increase by 7.92%, 8.18%, 8.65% and 7.02% under current climate, RCP2.6, RCP4.5 and RCP8.5 scenarios, respectively; (ii) distribution of forests as a whole shows upward elevational range shift, especially under RCP8.5 scenario and (iii) total aboveground biomass slowly increases at first and then decreases to 12%-16% of current distribution under RCPs. These results show that climate change can be expected to significantly influence forest composition, distribution and aboveground biomass in the subalpine forests of eastern Tibetan Plateau. This study is the first to simulate forest dynamics at the landscape scale in subalpine areas of the Tibetan Plateau, which provides an important step in developing more effective strategies of forest management for expected climate change, not only in China but also around the world.

aboveground net primary productionclimate changeforest landscape dynamicsLANDIS-IIspecies establishment probabilitysubalpine forestsTibetan Plateau

Wu, Yan、Liu, Junyan、Zou, Heng-Xing、Bachelot, Benedicte、Dong, Tingfa、Zhu, Zhongfu、Liao, Yuchen、Plenkovic-Moraj, Andelka

展开 >

Chinese Acad Sci, Chengdu Inst Biol, Chengdu 610041, Peoples R China

Rice Univ, Dept Biosci, Program Ecol & Evolutionary Biol, Houston, TX USA

Oklahoma State Univ, Dept Plant Pathol Ecol & Evolut, Stillwater, OK 74078 USA

China West Normal Univ, Key Lab Southwest China Wildlife Resources Conser, Minist Educ, Nanchong 637002, Sichuan, Peoples R China

Jiuzhaigou Nat Reserve Adm Bur, Jiuzhaigou, Peoples R China

Univ Zagreb, Dept Biol, Fac Sci, Zagreb, Croatia

展开 >

2021

Global change biology

Global change biology

SCI
ISSN:1354-1013
年,卷(期):2021.27(18)
  • 5
  • 86