首页|Smart node relocation (SNR) and connectivity restoration mechanism for wireless sensor networks

Smart node relocation (SNR) and connectivity restoration mechanism for wireless sensor networks

扫码查看
Abstract Node failures are inevitable in wireless sensor networks (WSNs) because sensor nodes in WSNs are miniature and equipped with small and often irreplaceable batteries. Due to battery drainage, sensor nodes can fail at any instance. Moreover, WSNs operate in hostile environments and environmental factors may also contribute to nodes failure. Failure of nodes leads to disruption of inter-node connectivity and might also lead to network partitioning. Failure to communicate with each other and with the base station can compromise the basic operation of the sensor network. For restoration of connectivity, a robust recovery mechanism is required. The existing connectivity restoration mechanisms suffer from shortcomings because they do not focus on energy-efficient operation and coverage-aware mechanisms while performing connectivity restoration. As a result, most of these mechanisms lead to the excessive mobility of nodes, which itself causes the utilization of excessive battery. In this work, we propose a novel technique called smart node relocation (SNR). SNR is capable of detecting and restoring the connectivity caused by either single or multiple node failures. For achieving energy efficiency, SNR relies on transmitting a lesser number of control packets. For achieving the goal of being coverage-aware, it tries to relocate only essential nodes while trying to restore connectivity. By performing extensive simulations, we prove that SNR outperforms the existing approaches concerning multiple performance metrics including but not limited to the total number of packets transmitted, total distance moved for connectivity restoration, the percentage reduction in field coverage.

Cut-vertexFailure recoveryNetwork connectivityNode relocationWireless sensor networkNode failures

Ali Shahzad、Zaman Safdar、Al Awady Amin、Saqib Muhammad、ul Hassan Mahmood、Mahmood Khalid、Saeed Muhammad Kashif

展开 >

Jouf University

Federal Directorate of Education

Najran University

Northern Borders University

King Khalid University

展开 >

2021

Eurasip Journal on Wireless Communications and Networking

Eurasip Journal on Wireless Communications and Networking

EISCI
ISSN:1687-1472
年,卷(期):2021.2021
  • 1
  • 27