首页|A near-infrared dicyanoisophorone-based fluorescent probe for discriminating HSA from BSA

A near-infrared dicyanoisophorone-based fluorescent probe for discriminating HSA from BSA

扫码查看
Despite the rapid development of fluorescent probe techniques for the detection of human serum albumin (HSA), a probe that discriminates between HSA and bovine serum albumin (BSA) is still a challenging task, since their similar chemical structures. As a continuation of our work, herein, a dicyanoisophoronebased fluorescent probe DCO2 is systematically studied for discrimination of HSA from BSA. The photo physical and sensing performances of DCO2, including basic spectroscopic properties, sensing sensitivity, and selectivity, exhibits that DCO2 could selectively bind with HSA and display remarkable fluorescence enhancement (-254-fold) at 685 nm. The gap of the fluorescent response of DCO2 between HSA and BSA is an obvious increase from 21% to 73% compared to the previous probe DCO1. The sensing mechanism was elucidated by Job's plot, displacement experiment, and molecular docking, suggesting that the specific response to HSA originated from the rigid donor structure and steric hindrance. DCO2 could be buried in the DS1 pocket of HSA, and only partly wedged into the DS1 pocket of BSA with exposing twisted N,Ndiethylamino group outside. Application studies indicated that DCO2 has well detective behavior for HSA in the biological fluids. This work could provide a new approach to design HSA-specific near-infrared fluorescence probes.(c) 2022 Published by Elsevier B.V.

Fluorescent probesHuman serum albuminBovine serum albuminNear-infraredMolecular dockingHUMAN SERUM-ALBUMINSELECTIVE DETECTIONBINDINGRECOGNITIONACIDQUANTIFICATIONDISEASEBOVINEBLUE

Liu, Bin、Zeng, Conghui、Zheng, Danna、Zhao, Xiongfei、Song, Chao、Qin, Tianyi、Xu, Zhongyong

展开 >

Shenzhen Univ

2022

Spectrochimica acta

Spectrochimica acta

ISSN:1386-1425
年,卷(期):2022.274
  • 4
  • 63