首页|Efficient detection for Nitrofurazone based on novel Ag2S QDs/g-C3N4 fluorescent probe
Efficient detection for Nitrofurazone based on novel Ag2S QDs/g-C3N4 fluorescent probe
扫码查看
点击上方二维码区域,可以放大扫码查看
原文链接
NSTL
Elsevier
In the paper, a novel fluorescent probe based on Ag2S QDs/g-C3N4 composite was synthesized by loading Ag2S quantum dots (Ag2S QDs) on the surface of g-C3N4 through in-situ synthesis method and developed to detect Nitrofurazone (NFZ) sensitively. The results showed that the linear detection range of Ag2S QDs/g-C3N4 to NFZ was 0-30 mu M, with a low detection limit of 0.054 mu M. The results of time-fluorescenceresolved spectroscopy and UV-vis absorption spectroscopy exhibited that the possible detection mechanism of Ag2S QDs/g-C3N4 to NFZ was proposed to be Internal Filtration Effect (IFE). Moreover, Multiwfn wavefunction analysis was employed to uncover the possible interaction between the Ag2S QDs/g-C3N4 and NFZ, thereby further revealing the fluorescence detection mechanism from the scale of atoms. Combining experiments and theoretical calculations, we proposed the sensing mechanism of the formation of non-fluorescent ground state complex linked by hydrogen bonds. This work indicated that the Ag2S QDs/g-C3N4 composite processed the ability to detect NFZ efficiently and sensitively. (C) 2021 Elsevier B.V. All rights reserved.