首页|QSAR Models of Reaction Rate Constants of Alkenes with Ozone and Hydroxyl Radical

QSAR Models of Reaction Rate Constants of Alkenes with Ozone and Hydroxyl Radical

扫码查看
As constantes de velocidade da rea??o do oz?nio com 95 alcenos (-logk_(O3)) e do radical hidroxila (?OH) com 98 alcenos (-logk_(OH)) na atmosfera foram previstas por modelos de rela??es quantitativas entre estrutura e atividade (QSAR). Cálculos usando a teoria do funcional da densidade (DFT) foram realizados para os respectivos alcenos no estado fundamental e para as estruturas do estado de transi??o para o processo de degrada??o na atmosfera. Técnicas de regress?o linear múltipla (MLR) e de redes neurais de regress?o generalizada (GRNN) foram utilizadas para desenvolver os modelos. O modelo GRNN de -logkO_3 com base em três descritores e propaga??o ideal σ de 0,09 tem erro quadrático médio (rms) de 0,344; o modelo GRNN de -logkOH com quatro descritores e propaga??o ideal σ de 0,14 produz um erro rms de 0,097. Comparado com os modelos da literatura, os modelos GRNN neste artigo mostram estatísticas melhores. A importancia dos descritores associados aos estados de transi??o na previs?o de k_(O3) e k_(OH) nos processos de degrada??o atmosférica foi demonstrada. The reaction rate constants of ozone with 95 alkenes (-logk_(O3)) and the hydroxyl radical (?OH) with 98 alkenes (-logk_(OH)) in the atmosphere were predicted by quantitative structure-activity relationship (QSAR) models. Density functional theory (DFT) calculations were carried out on respective ground-state alkenes and transition-state structures of degradation processes in the atmosphere. Stepwise multiple linear regression (MLR) and general regression neural network (GRNN) techniques were used to develop the models. The GRNN model of -logk_(O3) based on three descriptors and the optimal spread σ of 0.09 has the mean root mean square (rms) error of 0.344; the GRNN model of -logk_(OH) having four descriptors and the optimal spread σ of 0.14 produces the mean rms error of 0.097. Compared with literature models, the GRNN models in this article show better statistical characteristics. The importance of transition state descriptors in predicting k_(O3) and k_(OH) of atmospheric degradation processes has been demonstrated.

atmospheric degradationgeneral regression neural networkquantitative structure-activity relationshipreaction rate constanttransition states

Yueyu Xu、Xinliang Yu、Shihua Zhang

展开 >

College of Chemistry and Chemical Engineering

2013

Journal of the Brazilian Chemical Society

Journal of the Brazilian Chemical Society

CCR
ISSN:0103-5053
年,卷(期):2013.24(11)