首页|The behavior of zeolites wairakite and phillipsite at high P-T parameters
The behavior of zeolites wairakite and phillipsite at high P-T parameters
扫码查看
点击上方二维码区域,可以放大扫码查看
原文链接
NSTL
Elsevier
In situ investigation of mineral behavior in water medium at simultaneously high P-T parameters can be applied to modelling of mineral transformation processes in lithospheric plates. The behavior of zeolites wairakite and phillipsite under the P-T conditions of "cold" slab subduction, corresponding to the start of oceanic plate diving or ocean floor near geothermal sources, was studied by in situ Raman spectroscopy. During compression in water medium, phillipsite initial phase is stable up to T = 350 degrees C, P = 1.7 GPa and with further increase of P-T parameters, phillipsite undergoes amorphization and partially dissolves in water. Wairakite compressed in water medium has a polymorphic transformation at T approximate to 300 degrees C and P approximate to 0.4 GPa. At 300-450 degrees C and P = 1 GPa the Raman spectrum almost disappears due to the amorphization of wairakite. Zeolite wairakite partially dissolves, and other zeolite phillipsite grows out of the fluid at T = 450 degrees C and P = 1 GPa. This transformation indicates the higher stability of phillipsite in comparison to wairakite. The in situ observed high P-T stability of phillipsite, which does not transform to other zeolites, and its formation from wairakite may indicate phi possible widespread distribution of this zeolite in marine sediments. By using the plane-wave pseudo-potential method, ab initio DFT calculations of Raman and FTIR spectra of wairakite were carried out. Comparing theoretical and experimental spectra, interpretation of the vibrational spectra of both zeolites was suggested. (C) 2022 Published by Elsevier B.V.