Kazemi, SoheilaKawaguchi, ShinsakuBadr, Christian E.Mattos, Daphne R....
16页
查看更多>>摘要:Coibamide A is a potent cancer cell toxin and one of a select group of natural products that inhibit protein entry into the secretory pathway via a direct inhibition of the Sec61 protein translocon. Many Sec61 client proteins are clinically relevant drug targets once trafficked to their final destination in or outside the cell, however the use of Sec61 inhibitors to block early biosynthesis of specific proteins is at a pre-clinical stage. In the present study we evaluated the action of coibamide A against human epidermal growth factor receptor (HER, ErbB) proteins in representative breast and lung cancer cell types. HERs were selected for this study as they represent a family of Sec61 clients that is frequently dysregulated in human cancers, including coibamide-sensitive cell types. Although coibamide A inhibits biogenesis of a broad range of Sec61 substrate proteins in a presumed substrate nonselective manner, endogenous HER3 (ErbB-3) and EGFR (ErbB-1) proteins were more sensitive to coibamide A, and the related Sec61 inhibitor apratoxin A, than HER2 (ErbB-2). Despite this rank order of sensitivity (HER3 > EGFR > HER2), Sec61-dependent inhibition by coibamide A was sufficient to decrease cell surface expression of HER2. We report that coibamide Aor apratoxin A-mediated block of HER3 entry into the secretory pathway is unlikely to be mediated by the HER3 signal peptide alone. HER3 (G11L/S15L), that is fully resistant to the highly substrate-selective cotransin analogue CT8, was more resistant than wild-type HER3 but only at low coibamide A (3 nM) concentrations; HER3 (G11L/S15L) expression was inhibited by higher concentrations of either natural product. Timeand concentration-dependent decreases in HER protein expression induced a commensurate reduction in AKT/MAPK signaling in breast and lung cancer cell types and loss in cell viability. Coibamide A potentiated the cytotoxic efficacy of small molecule kinase inhibitors lapatinib and erlotinib in breast and lung cancer cell types, respectively. These data indicate that natural product modulators of Sec61 function have value as chemical probes to interrogate HER/ErbB signaling in treatment-resistant human cancers.
Bland, A. R.Shrestha, N.Bower, R. L.Rosengren, R. J....
10页
查看更多>>摘要:Cell based studies have suggested that the diabetes drug metformin may combine with the anaplastic lymphoma kinase receptor (ALK) inhibitor crizotinib to increase ALK positive lung cancer cell killing and overcome crizotinib resistance. We therefore tested metformin alone and in combination with crizotinib in vivo, by employing a xenograft mouse model of ALK positive lung cancer. We found that 14 days of daily oral metformin (100 mg/ kg) alone had a moderate but statistically significant effect on tumour growth suppression, but in combination with crizotinib, produced no greater tumour suppression than crizotinib (25 mg/kg) alone. We also reassessed the effect of metformin on EML4-ALK positive lung cancer (H3122) cell viability. Although metformin alone did have a moderate effect on cell viability (30% suppression) this was only at a clinically irrelevant concentration (5 mM) and there was no additive effect with cytotoxic concentrations of crizotinib. Moreover, metformin did not overcome crizotinib resistance in our resistant cells. Nevertheless, we were able to show that metformin induces a G1-cell cycle arrest and apoptosis alone and in combination with crizotinib. Also, consistent with earlier work, the addition of insulin-like growth factor-1 (IGF-1) to EML4-ALK positive cancer cells reduced cell killing by crizotinib. We therefore hypothesised that the effect of metformin in vivo was not due to direct cytotoxicity on cancer cells, but by modulation of IGF-1 expression. We therefore measured levels of IGF-1 in plasma taken from mice treated with metformin, but found no difference between the drug treatment and control groups. We further hypothesised that the effect of metformin could be due to modulation of thrombospondin 1 (TSP-1), which metformin has been proposed to regulate in vivo, but again we found no difference between the experimental groups. Finally, we investigated the potential for liver and kidney toxicity, as well as CYP3A based interactions, from the combination of metformin with crizotinib.
Marensi, VanessaKeeshan, Karen R.MacEwan, David J.
14页
查看更多>>摘要:Acute myelogenous leukaemia (AML) is an aggressive blood cancer characterized by the rapid proliferation of immature myeloid blast cells, resulting in a high mortality rate. The 5-year overall survival rate for AML patients is approximately 25%. Circa 35% of all patients carry a mutation in the FLT3 gene which have a poor prognosis. Targeting FLT3 receptor tyrosine kinase has become a treatment strategy in AML patients possessing FLT3 mutations. The most common mutations are internal tandem duplications (ITD) within exon 14 and a single nucleotide polymorphism (SNP) that leads to a point mutation in the D835 of the tyrosine kinase domain (TKD). Variations in the ITD sequence and the occurrence of other point mutations that lead to ligand-independent FLT3 receptor activation create difficulties in developing personalized therapeutic strategies to overcome observed mutation-driven drug resistance. Midostaurin and quizartinib are tyrosine kinase inhibitors (TKIs) with inhibitory efficacy against FLT3-ITD, but exhibit limited clinical impact. In this review, we focus on the structural aspects of the FLT3 receptor and correlate those mutations with receptor activation and the consequences for molecular and clinical responsiveness towards therapies targeting FLT3-ITD positive AML.
查看更多>>摘要:B7-H3 is an immune checkpoint molecule from the B7 superfamily. It has been widely studied in tumor immune evasion in certain types of cancer. In our preliminary study, we found that B7-H3 is specifically enriched in tumor-associated macrophages (TAMs) in triple-negative breast cancer (TNBC) patients and strongly correlated with poor clinical prognosis. However, the role of B7-H3 in breast cancer remains elusive. Our current study aims to explore the potential of B7-H3 as a novel target in TNBC therapy. Here, we demonstrated that B7-H3 enriched on TAMs is tightly correlated with TNBC clinical progression. B7-H3(high) TAMs exhibit great pro-metastatic and immunosuppressive functions by intriguing extracellular matrix (ECM) reconstruction and tumor angiogenesis, therefore helping tumor cell dissemination and dampening T-cell infiltration in tumor microenvironment (TME). Importantly, targeting blockade of B7-H3 by anti-B7-H3 antibody improves the tumor vasculature disorder, thereby enhancing chemotherapy and PD-1 therapy efficacy. In conclusion, our study establishes the correlation between B7-H3high TAMs and TNBC progression for the first time. By exploring the possibility of targeting B7-H3 expressed in both tumor cells and TAMs, we suggest that B7-H3 could be a promising target in clinical TNBC treatment.
查看更多>>摘要:Bone-derived cytokines refer to various proteins and peptides that are released from the skeleton and can distribute in organisms to regulate homeostasis by targeting many organs, such as the pancreas, brain, testicles, and kidneys. In addition to providing support and movement, many studies have disclosed the novel endocrine function of bone, and bone can modulate glucose and energy metabolism as well as phosphate metabolism by versatile bone-derived cytokines. However, this specific exoskeleton function of bone-derived cytokines in the regulation of homeostasis and the pathological response caused by skeletal dysfunction are still not very clear, and elucidation of the above mechanisms is of great significance for understanding the pathological processes of metabolic disorders and in the search for novel therapeutic measures for maintaining organ stability and physical fitness.
查看更多>>摘要:Tumor-associated macrophages (TAMs) are the most widely infiltrating immune cells in the tumor microenvironment (TME). Clinically, the number of TAMs is closely correlated with poor outcomes in multiple cancers. The biological actions of TAMs are complex and diverse, including mediating angiogenesis, promoting tumor invasion and metastasis, and building an immunosuppressive microenvironment. Given these pivotal roles of TAMs in tumor development, TAM-based strategies are attractive and used in certain tumor therapies, including inhibition of angiogenic signalling, blockade of the immune checkpoint, and macrophage enhancement phagocytosis. Several attempts to develop TAM-targeted agents have been made to deplete TAMs or reprogram the behaviour of TAMs. Some have shown a favourable curative effect in monotherapy, combination with chemotherapy or immunotherapy in clinical trials. Additionally, a new macrophage-based cell therapeutic technology was recently developed by equipping macrophages with CAR molecules. It is expected to break through barriers to solid tumor treatment. Although TAM-related studies have yielded positive antitumor outcomes, further investigations are needed to better characterize TAMs, which will benefit further establishment of novel strategies for tumor therapy. Here, we concisely summarize the functions of TAMs in the TME and comprehensively introduce the latest TAM-based regimens in cancer treatment.
查看更多>>摘要:Background and Purpose: Previously, we discovered that the activation of nucleotide-binding oligomerization domain 2 (NOD2) enhances platelet activation. We here investigated the antiplatelet and antithrombotic potential of GSK669, a NOD2 antagonist.
查看更多>>摘要:Interstitial cystitis/bladder pain syndrome (IC/BPS) is a type of chronic bladder inflammation characterized by increased voiding frequency, urgency and pelvic pain. The sensitization of bladder afferents is widely regarded as one of the pathophysiological changes in the development of IC/BPS. There is evidence that adenosine A(2a) receptors are involved in regulating the sensitization of sensory afferents. However, the effect of adenosine A(2a) receptors on cystitis remains unknown. In the present study, a rat model of chronic cystitis was established by intraperitoneal injection with cyclophosphamide (CYP). Cystometry and behavioral tests were performed to investigate bladder micturition function and nociceptive pain. The rats with chronic cystitis showed symptoms of bladder overactivity, characterized by an increase in bladder voiding frequency and voiding pressure. CYP treatment significantly increased the expression of the A(2a) receptor in bladder afferent fibers and dorsal root ganglion (DRG) neurons. The A(2a) receptor antagonist ZM241385 prevented bladder overactivity and hyperalgesia elicited by CYP-induced cystitis. In addition, the A(2a) receptor and TRPV1 were coexpressed on DRG neurons. The TRPV1 antagonist capsazepine blocked bladder overactivity induced by the A(2a) receptor agonist CGS21680. In contrast, ZM241385 significantly inhibited the capsaicin-induced increase in intracellular calcium concentration in DRG neurons. These results suggest that suppression of adenosine A(2a) receptors in bladder afferents alleviates bladder overactivity and hyperalgesia elicited by CYP-induced cystitis in rats by inhibiting TRPV1, indicating that the adenosine A(2a) receptor in bladder afferents is a potential therapeutic target for the treatment of IC/BPS.
查看更多>>摘要:The opening of endothelial small-conductance calcium-activated potassium channels (K(Ca)2.3) is essential for endothelium-dependent hyperpolarization (EDH), which predominantly occurs in small resistance arteries. Adenosine monophosphate-activated protein kinase (AMPK), an important metabolic regulator, has been implicated in regulating endothelial nitric oxide synthase activity. However, it was unclear whether AMPK regulated endothelial K(Ca)2.3-mediated EDH-type vasodilation. Using bioinformatics analysis and myograph system, we investigated the regulation by AMPK of K(Ca)2.3 in human umbilical vein endothelial cells (HUVECs) or mouse second-order mesenteric resistance arteries. In HUVECs, AMPK activation either by activators (AICAR, A769662 and MK-8722) or expression of the constitutively active form of AMPK significantly upregulated K(Ca)2.3 expression. Such effects were abolished by AMPK inhibitor (compound C) or AMPK alpha 1-/alpha 2-siRNA, extracellular-signal-regulated-kinase 5 (ERK5) inhibitor (ERK5-IN-1), and specific siRNA to myocyte-enhancer factor 2 (MEF2) or kruppel-like factor 2/4 (KLF2/4). K(Ca)2.3 expression was significantly reduced in mesenteric resistance arteries in AMPK alpha 2 knockout mice when compared with littermate control mice. Furthermore, in high-fat diet fed mice, 2-week treatment with AICAR restored endothelial K(Ca)2.3 expression in mesenteric resistance arteries with improved endothelial dysfunction. Our results demonstrate that activation of AMPK upregulates K(Ca)2.3 channel expression through the ERK5-MEF2-KLF2/4 signaling pathway in vascular endothelium, which contributes to benefits through K(Ca)2.3-mediated EDH-type vasodilation in mesenteric resistance arteries.
查看更多>>摘要:Platelets are the smallest blood cells, and their activation (platelet cohesion or aggregation) at sites of vascular injury is essential for thrombus formation. Since the use of antiplatelet therapy is an unsolved problem, there are now focused and innovative efforts to develop novel antiplatelet compounds. In this context, we assessed the antiplatelet effect of an acylhydroquinone series, synthesized by Fries rearrangement under microwave irradiation, evaluating the effect of diverse acyl chain lengths, their chlorinated derivatives, and their dimethylated derivatives both in the aromatic ring and also the effect of the introduction of a bromine atom at the terminus of the acyl chain. Findings from a primary screening of cytotoxic activity on platelets by lactate dehydrogenase assay identified 19 non-toxic compounds from the 27 acylhydroquinones evaluated. A large number of them showed IC50 values less than 10 mu M acting against specific pathways of platelet aggregation. The highest activity was obtained with compound 38, it exhibited sub-micromolar IC50 of 0.98 +/- 0.40, 1.10 +/- 0.26, 3.98 +/- 0.46, 6.79 +/- 3.02 and 42.01 +/- 3.48 mu M against convulxin-, collagen-, TRAP-6-, PMA- and arachidonic acid-induced platelet aggregation, respectively. It also inhibited P-selectin and granulophysin expression. We demonstrated that the antiplatelet mechanism of compound 38 was through a decrease in a central target in human platelet activation as in mitochondrial function, and this could modulate a lower response of platelets to activating agonists. The results of this study show that the chemical space around ortho-carbonyl hydroquinone moiety is a rich source of biologically active compounds, signaling that the acylhydroquinone scaffold has a promising role in antiplatelet drug research.