首页期刊导航|Talanta
期刊信息/Journal information
Talanta
Pergamon Press
Talanta

Pergamon Press

0039-9140

Talanta/Journal TalantaSCIISTPEIAHCI
正式出版
收录年代

    Sensitivity of photoelctrocehmical aptasensor using spiral nanorods for detecting antiobiotic levels in experimental and real samples

    Sun, YimengMa, CongWu, ManJia, Chunping...
    7页
    查看更多>>摘要:Given increasing concern regarding antibiotic environmental contamination, there is immediate need to monitor antibiotic levels to effectively control pollution. In this study, we used a photoelectrochemical aptasensor based on TiO2@MoS2 spiral nanoarrays to detect chloramphenicol (CAP) in antibiotics. Nanoarrays were directly grown on fluorine-doped tin oxide (FTO) conductive glass with excellent biochemical stability, while aptamer-SH were immobilized by chemical binding on a synthetic TiO2@MoS2 nanoarray. Results show that the photocurrents were reduced in the presence of photoelectrochemistry associated with specific selection of aptamer for CAP. When the measurement of the fabricated nanomaterial chip was carried out using a three-electrode system, we found a highly specific and stable detection of chloramphenicol that ranged between 0.1 pM and 1 mu M, with the detection limit of 0.1 pM. In addition, we obtained satisfactory results when real sample were used to validate the potential of photoelectrochemical (PEC) aptasensor for detecting chloramphenicol content in milk. Our results demonstrate that photoelectrochemical aptasensor is conducive to the development of less toxic multi-functional nanomaterials, making the biosensor more robust and environmentally friendly. Therefore, photoelectrochemical aptasensor can be widely applied in the field of environmental monitoring.

    Rapid quantitative analysis of hormones in serum by multilayer paper spray MS: Free MS from HPLC

    Wu, TianhaoSun, GongweiMa, MingyingPan, Xingyu...
    7页
    查看更多>>摘要:Developing rapid and reliable method for simultaneous hormones quantitation is of great significant because of important roles of hormones in metabolism. However, current methods are faced with problems of low throughput or complicated operation procedure to remove matrices from serum samples in routine clinical diagnosis. In the present work, a multilayer PS-MS method was developed for rapid and simple detection of hormones. In the strategy, multilayer filter paper acted as the Liquid Chromatography in LC-MS/MS for separation of hormones and biological matrices. Qualitative and quantitative analysis of three hormones, testosterone (T), androsterone (ADT) and androstenedione (4-AD) were realized through MS/MS spectra. The method exhibited linearity in the range of 0.02-2 mu g/L and the results of recovery and repeatability were satisfactory for standard samples and spiked serum. The time-cost of a whole detection process was less than 3 min. The established multilayer PS-MS realized rapid, simple and reliable quantitative analysis of various hormones and provided broad prospect for clinical analysis of small molecules in different biological samples. Moreover, it provides a novel MS approach with high through-put and free HPLC, meeting the requirements of point-of-care testing (POCT).

    Smartphone-assisted electrochemical sensor for reliable detection of tyrosine in serum

    Goffredo, Bianca MariaMoscone, DanilaArduini, FabianaDe Lellis, Benedetta...
    9页
    查看更多>>摘要:Point-of-care devices have attracted a huge interest by the scientific community because of the valuable potentiality for rapid diagnosis and precision medicine through cost-effective and easy-to-use devices for on-site measurement by unskilled personnel. Herein, we reported a smartphone-assisted electrochemical device consisted of a screen-printed electrode modified with carbon black nanomaterial and a commercially available smartphone potentiostat i.e. EmStat3 Blue, for sensitive detection of tyrosine. Once optimized the conditions, tyrosine was detected in standard solutions by square wave voltammetry, achieving a linear range comprised between 30 and 500 mu M, with a detection limit equal to 4.4 mu M. To detect tyrosine in serum, the interference of another amino acid i.e. tryptophan was hindered using a sample treatment with an extraction cartridge. The agreement of results analyzing serum samples with HPLC reference method and with the developed smart sensing system demonstrated the suitability of this smartphone-assisted sensing tool for cost-effective and rapid analyses of tyrosine in serum samples.

    A novel chloride selective potentiometric sensor based on graphitic carbon nitride/silver chloride (g-C3N4/AgCl) composite as the sensing element

    Akhoundian, MaedehAlizadeh, TaherRafiei, Faride
    8页
    查看更多>>摘要:In this research, AgCl anchored graphitic carbon nitride (g-C3N4) was introduced as a novel potentiometric sensing element. A g-C3N4/AgCl-modified carbon paste electrode (CPE) was fabricated and used as an outstandingly selective potentiometric sensor to determine Cl- in water samples. The g-C3N4/AgCl nano composite was characterized with SEM, XRD and FT-IR techniques. It was demonstrated that, the incorporation of 5% of g-C3N4/AgCl, as a chloride ionophore in a CPE, results in a stable potential response of the electrode to chloride ion. The Nernstian slope of the electrode response was 55.4 (+/- 0.3) mVdecade(-1), over a wide linear concentration range of 1 x 10(-6)-1 x 10(-1) mol L-1 and the detection limit of the electrode was estimated to be 4.0 x 10- 7 mol L-1. The g-C3N4/AgCl-modified CPE electrode provided fast response time and long-term stability (more than 2 months) while the potential interfering ions such as I-, Br-, and CN- showed no significant effect on the potential response. Since these interfering ions affected the response of the CPE electrode, modified with AgCl, highlighting the interesting effect of g-C3N4 on the sensor performance. This innovative electrode was shown to be a sensitive and accurate sensor for chloride ion content estimation in water samples.

    Real-time monitoring of immunoglobulin G levels in milk using an ordered porous layer interferometric optical sensor

    Wang, LuZhou, LeleMa, NingSu, Qianqian...
    9页
    查看更多>>摘要:Immunoglobulin G (IgG) is a significant ingredient of immunological activity in milk and colostrum, the activity and content of which is easily disturbed by potentially conditional variant during sterilization. Therefore, developing robust methods for the detection of IgG levels in milk is especially important. Herein, protein A from the Staphylococcus aureus functionalized silica colloidal crystalline film (SCC@SPA) sensing unit combined with ordered porous layer interferometry (OPLI) for IgG detection in untreated bovine milk was developed. Calibration curves in milk and buffer were set up by the variations of the optical thickness (OT) of the sensing unit after the IgG association and dissociation phases. The influence of temperature on the level of IgG was evaluated. Furthermore, the identification of IgG levels with pasteurized milk and ultrahigh temperature (UHT) sterilized milk from the market randomly was successfully carried out without any sample pretreatment. More importantly, compared with other methods, this novel method has the advantages of convenient operation, low cost, and suitability for point-of-care (POC) testing.

    An integrated system for automated measurement of airborne pollen based on electrostatic enrichment and image analysis with machine vision

    Yang, Jia-JingKlinkenberg, ChristianPan, Jian-ZhangWyss, Hans M....
    9页
    查看更多>>摘要:Here we describe an automated and compact pollen detection system that integrates enrichment, in-situ detection and self-cleaning modules. The system can achieve continuous capture and enrichment of pollen grains in air samples by electrostatic adsorption. The captured pollen grains are imaged with a digital camera, and an automated image analysis based on machine vision is performed, which enables a quantification of the number of pollen particles as well as a preliminary classification into two types of pollen grains. In order to optimize and evaluate the system performance, we developed a testing approach that utilizes an airflow containing a precisely metered amount of pollen particles surrounded by a sheath flow to achieve the generation and lossless transmission of standard gas samples. We studied various factors affecting the pollen capture efficiency, including the applied voltage, air flow rate and humidity. Under optimized conditions, the system was successfully used in the measurement of airborne pollen particles within a wide range of concentrations, spanning 3 orders of magnitude.

    A novel temperature-controlled open source microcontroller based sampler for collection of exhaled breath condensate in point-of-care diagnostics

    Dosedelova, VeraForet, FrantisekDoubkova, MartinaBrat, Kristian...
    8页
    查看更多>>摘要:Exhaled breath condensate (EBC) is an attractive, non-invasive sample for clinical diagnostics. During EBC collection, its composition is influenced by the collection temperature, a factor that is often not thoroughly monitored and controlled. In this study, we assembled a novel, simple, portable, and inexpensive device for EBC collection, able to maintain a stable temperature at any value between -7 degrees C and +12 degrees C. The temperature was controlled using a microcontroller and a thermoelectric cooler that was employed to cool the aluminum block holding the glass tube or the polypropylene syringe. The performance of the novel sampler was compared with the passively cooled RTubeTM and a simple EBC sampler, in which the temperature was steadily increasing during sampling. The developed sampler was able to maintain a stable temperature within +/- 1 degrees C. To investigate the influence of different sampling temperatures (i.e., +12,-7, -80 degrees C) on the analyte content in EBC, inorganic ions and organic acids were analyzed by capillary electrophoresis with a capacitively coupled contactless conductivity detector. It was shown that the concentration of metabolites decreased significantly with decreasing temperature. The portability and the ability to keep a stable temperature during EBC sampling makes the developed sampler suitable for point-of-care diagnostics.

    Microfluidic paper-based analytical device by using Pt nanoparticles as highly active peroxidase mimic for simultaneous detection of glucose and uric acid with use of a smartphone

    Zheng, JieZhu, MinKong, JiaoLi, Zimu...
    9页
    查看更多>>摘要:Herein, a simple microfluidic paper-based analytical device (mu PAD) by using platinum nanoparticles (Pt NPs) as highly active peroxidase mimic for simultaneous determination of glucose and uric acid was fabricated. The mu PAD consisted of one sample transportation layer, four paper-based detection chips, and two layers of hydrophobic polyethylene terephthalate (PET) films. The four detection chips were immobilized with various chromogenic reagents, Pt NPs, and specific oxidase (glucose oxidase or uricase). H2O2 generated by specific enzymatic reactions could oxidize co-immobilized chromogenic reagents to produce colored products by using Pt NPs as efficient catalyst. The multi-layered structure of mu PAD could effectively improve the color uniformity and color intensity. Total color intensity from each two detection chips modified with distinct chromogenic reagents were used for quantitative analysis of glucose and uric acid, respectively, resulting in significantly improved sensitivity. The linear range for glucose and uric acid detection was 0.01-5.0 mM and 0.01-2.5 mM, respectively. Satisfied results were obtained for glucose and uric acid detection in real serum samples. An easy-to-use smartphone APP was developed for convenient and intelligent detection. The developed mu PAD integrated with smartphone as detector holds great applicability for simple and portable on-site analysis.

    High-sensitivity and temperature-controlled switching methanol sensor prepared based on the dual catalysis of copper particles

    Ma, PengchengMa, Xiaoyan
    8页
    查看更多>>摘要:In this work, based on the dual catalytic properties of copper (Cu) particles for methanol oxidation and persulfate initiated radical polymerization, a temperature-controlled catalytic electrode, defined the PNIPAM-Cu@CP, was constructed by electrodepositing Cu particles on a carbon paper electrode and triggering the polymerization of the temperature-sensitive polymer N-isopropylacrylamide (PNIPAM) on the surface of the electrode, which is expected to be applicated in the micro-direct methanol fuel cell (DMAC) for detection of methanol crossover and also has temperature recognition and high-temperature self-protection functions. Cu particles and PNIPAM were characterized by X-ray diffraction (XRD), fourier-transform infrared spectroscopy (FT-IR) and scanning electron microscopy (SEM) for their specific structure and morphology. The cyclic voltammetry (CV) results showed the proposed electrode as a temperature-controlled switch-like methanol sensor, has a wide linear range (1-300 mM and 300-1200 mM), excellent sensitivity (72.8 mu A cm(-2) mM(-1) and 11.5 mu A cm(-2) mM(-1)) and a low detection limit of 0.3 mM for methanol. In addition, the sensor also has excellent selectivity and temperature-triggered switchable electrocatalytic activity. The efficient and simple preparation method of the electrode is expected to be used in the development of a methanol sensor for real-time methanol detection in micro-DMAC.

    Ultrasensitive and facile detection of multiple trace antibiotics with magnetic nanoparticles and core-shell nanostar SERS nanotags

    Liu, BingZheng, ShiyaLi, HaitaoXu, Junjie...
    10页
    查看更多>>摘要:Ultrasensitive, multiplex, rapid, and accurate quantitative determination of trace antibiotics remains a challenging issue, which is of importance to public health and safety. Herein, we presented a multiplex strategy based on magnetic nanoparticles and surface-enhanced Raman scattering (SERS) nanotags for simultaneous detection of chloramphenicol (CAP) and tetracycline (TTC). In practice, SERS nanotags based on Raman reporter probes (RRPs) encoded gold-silver core-shell nanostars were used as detection labels for identifying different types of antibiotics, and the magnetic nanoparticles could be separated simply by magnetic force, which significantly improves the detection efficiency, reduces the analysis cost, and simplifies the operation. Our results demonstrate that the as-proposed assay possesses the capacities of high sensitivity and multiplexing with the limits of detection (LODs) for CAP and TTC of 159.49 and 294.12 fg mL(-1), respectively, as well as good stability and reproducibility, and high selectivity and reliability. We believe that this strategy holds a great promising perspective for the detection of trace amounts of antibiotics in microsystems, which is crucial to our life. Additionally, the assay can also be used to detect other illegal additives by altering the appropriate antibodies or aptamers.