首页期刊导航|电子学报
期刊信息/Journal information
电子学报
中国电子学会
电子学报

中国电子学会

王守觉

月刊

0372-2112

new@ejournal.org.cn;wanghui@ejournal.net.cn

010-68279116,68285082

100036

北京165信箱

电子学报/Journal Acta Electronica SinicaCSCD北大核心CSTPCDEI
查看更多>>1962年创刊,中国电子学会主办的高级学术月刊。刊登电子与信息及相关领域代表我国研究水平的最新科研成果和技术进展。本刊为中国自然科学核心期刊之一;科技部科技论文统计源期刊;中国科学引文数据库来源期刊。获2000年首届国家期刊奖以及2000年国家自然科学基金重点学术期刊专项基金资助。现被五个大型检索机构(Ei、Sci-Expanded、SA、苏联文摘杂志(рж)和日本科技文献速报)作为固定收录对象。
正式出版
收录年代

    基于双重约束的最优BN结构学习算法

    陈艺薇邸若海王鹏张新兰...
    2477-2490页
    查看更多>>摘要:针对现有基于动态规划的贝叶斯网络结构学习算法复杂度高、无法在合理时间内学习大规模网络的问题,提出基于双重约束的最优贝叶斯网络(Bayesian Network,BN)结构学习算法.首先,利用最大信息系数和马尔科夫毯限制条件独立性(Conditional Independence,CI)测试的候选节点集合和约束集,得到邻居节点集合;其次,利用邻居节点集合约束父节点图的搜索过程,得到候选父节点集合,从候选父节点集合中取出每个节点的最优父集构造初始有向图;再次,利用Tarjan算法计算初始有向图中的强连通分量,得到节点块序;最后,利用节点块序约束节点序图的搜索过程,获得最优的BN结构.实验表明,相比于现有的5种基于动态规划的结构学习算法,本文提出的算法在精度稍微降低的前提下,极大幅度提高了算法的学习效率,如Sachs网络,本文提出的算法相对DPCMB(Dynamic Programming Constrained with Markov Blanket)算法降低了40.3%的时耗,算法精度下降了12.1%.

    贝叶斯网络最大信息系数条件独立性测试马尔科夫毯

    Cross-CNN:基于CNN和Transformer混合模型的动画跨帧线稿着色算法

    余毅丰钱江波严迪群王翀...
    2491-2502页
    查看更多>>摘要:对长序列的动画线稿帧进行着色是计算机视觉中一项具有挑战性的任务.一方面,线稿中包含的信息较为稀疏,需要着色算法对缺失的信息进行推断;另一方面,连续帧之间的色彩需要保持一致,以确保整个视频的视觉质量.现有的着色算法多数只针对单张图片进行着色,这类算法只给出一个开放性的符合合理范围的色彩结果,无法适用于帧序列着色.另一些基于参考帧的着色算法,并没有将2帧之间的关系有机地联系起来,导致着色效果不够出色.在同一镜头序列中,同一对象的特征往往不会发生太大变化,因此,可以设计一个根据给定参考帧,即可给线稿自动着色的模型.为此,本文提出了基于CNN(Convolutional Neural Networks)和Transformer相结合的模型Cross-CNN,该模型能够从参考帧中寻找并匹配颜色,从而保证时间维度上的特征一致性.Cross-CNN模型参考帧和线稿帧在通道维度叠加,输入预训练的Resnet50网络提取局部融合特征,将融合特征图传给Transformer结构进行编码以提取全局特征.在Transformer结构中设计了交叉注意力机制更好地匹配远距离特征.最后使用带有跳层连接的卷积解码器完成着色图片输出.本文在数据集方面从8部电影中截取画面并经过严格筛选,最终制作了一个包含20000对二元组的数据集用于实验研究.Cross-CNN的SSIM(Structural SIMilarity)达到了0.932,高于SOTA算法0.014.本文算法代码链接:https://github.com/silenye/Cross-CNN.

    线稿着色卷积神经网络Transformer颜色匹配动画制作

    改进自适应模型池的在线异常检测算法

    项秋艳訾玲玲丛鑫
    2503-2514页
    查看更多>>摘要:精确的在线异常检测方法是物联网行业发展的核心,其中,以复杂和动态数据流为对象的在线异常识别是研究热点.现有在线异常检测方法存在处理复杂性负载过重问题,离线深度异常检测方法则存在因数据分布变化导致概念漂移问题.针对上述问题,本文提出了改进自适应模型池的在线异常检测框架,该框架可以与基于自动编码器的异常检测方法协作实现在线异常检测.首先,利用基于自动编码器的异常检测模型进行基本异常识别;其次,以自适应模型池为基础,融合概念漂移检测算法准确识别概念漂移,适应动态变化的数据流,解决概念漂移现象;最后,优化自适应模型池的模型合并方法,提升在线异常识别能力.实验结果表明,相比自动编码器模型的流变体和原自适应模型池算法,提出的算法在异常检测精度指标上分别提升了20.2%和5.83%,同时,最佳精度指标高于现有在线异常检测算法约16.7%.

    无监督学习自动编码器概念漂移异常检测自适应模型池数据流

    YOLO-POD:基于多维注意力机制的高精度PCB微小缺陷检测算法

    郭艳王智文赵润星
    2515-2528页
    查看更多>>摘要:随着电子设备的广泛应用,印刷电路板(Printed Circuit Board,PCB)在电子制造行业中具有重要意义.然而,由于制造过程中的不完美和环境因素的干扰,PCB上可能存在微小的缺陷.因此,开发高效准确的缺陷检测算法对于确保产品质量至关重要.针对PCB微小缺陷检测问题,本文提出了一种基于多维注意力机制的高精度PCB微小缺陷检测算法.为降低网络的模型参数量和计算量,引入部分卷积(Partial Convolution,PConv),将ELAN(Efficient Layer Aggregation Network)模块设计为更加高效的P-ELAN,同时,为增强网络对微小缺陷的特征提取能力,引入多维注意力机制(Multi-Dimensional Attention Mechanism,MDAM)的全维动态卷积(Omni-dimensional Dynamic Convolution,ODConv)并结合部分卷积,设计了POD-CSP(Partial ODconv-Cross Stage Partial)和POD-MP(Partial ODconv-Max Pooling)跨阶段部分网络模块,提出了OD-Neck结构.最后,本文基于(Youo Only Look Once version 7,YOLOv7)提出了对小目标更加高效的YOLO-POD模型,并在训练阶段采用一种新颖的Alpha-SIoU损失函数对网络进行优化.实验结果表明,YOLO-POD的检测精确率和召回率分别达到了98.31%和97.09%,并在多个指标上取得了领先优势,尤其是对于更严格的(mean Average Precision at IoU threshold of 0.75,mAP75)指标,比原始的YOLOv7模型提高28%.验证了YOLO-POD在PCB缺陷检测性能中具有较高的准确性和鲁棒性,满足高精度的检测要求,可为PCB制造行业提供有效的检测解决方案.

    印刷电路板小目标缺陷检测POD-CSPPOD-MP全维动态卷积多维注意力机制

    基于溯源图的网络攻击调查研究综述

    仇晶陈荣融朱浩瑾肖岩军...
    2529-2556页
    查看更多>>摘要:网络攻击调查是实现主动防御、溯源反制的重要手段.面向高隐蔽、强对抗的现代网络攻击,研究高效率、自动化攻击调查方法,提升己方快速响应复杂网络攻击能力,是智能网络攻防关键技术之一.现有研究通过将系统审计日志建模成可表达攻击事件因果依赖关系的溯源图,利用溯源图强大的关联分析和语义表达能力,对复杂隐蔽网络攻击进行调查,相较传统方法效果提升显著.在全面收集分析基于溯源图的攻击调查研究工作的基础上,根据溯源图利用方式及特征挖掘维度的差异,将基于溯源图的攻击调查方法划分为基于因果分析、基于深度表示学习和基于异常检测三类,总结凝练每类方法具体工作流程和通用框架.梳理溯源图优化方法,剖析相关技术从理论向产业落地的能力演变历程.归纳攻击调查常用数据集,对比分析基于溯源图的攻击调查代表性技术和性能指标,最后展望了该领域未来发展方向.

    攻击调查溯源图高级持续性威胁深度学习异常检测