首页期刊导航|极端制造(英文)
期刊信息/Journal information
极端制造(英文)
极端制造(英文)
极端制造(英文)/Journal International Journal of Extreme ManufacturingCSCDCSTPCDSCI
正式出版
收录年代

    Recent advances in high charge density triboelectric nanogenerators

    Xin CuiJiaheng NieYan Zhang
    1-20页
    查看更多>>摘要:Triboelectric materials with high charge density are the building-block for the commercial application of triboelectric nanogenerators(TENGs).Unstable dynamic processes influence the change of the charge density on the surface and inside of triboelectric materials.The charge density of triboelectric materials depends on the surface and the internal charge transfer processes.The focus of this review is on recent advances in high charge density triboelectric materials and advances in the fabrication of TENGs.We summarize the existing strategies for achieving high charge density in triboelectric materials as well as their fundamental properties.We then review current optimization methods for regulating dynamic charge transfer processes to increase the output charge density:first,increasing charge injection and limiting charge dissipation to achieve a high average surface charge density,and second,regulating the internal charge transfer process and storing charge in triboelectric materials to increase the output charge density.Finally,we present the challenges and prospects in developing high-performance triboelectric materials.

    Two-photon polymerization lithography for imaging optics

    Hao WangCheng-Feng PanChi LiKishan S Menghrajani...
    21-61页
    查看更多>>摘要:Optical imaging systems have greatly extended human visual capabilities,enabling the observation and understanding of diverse phenomena.Imaging technologies span a broad spectrum of wavelengths from x-ray to radio frequencies and impact research activities and our daily lives.Traditional glass lenses are fabricated through a series of complex processes,while polymers offer versatility and ease of production.However,modern applications often require complex lens assemblies,driving the need for miniaturization and advanced designs with micro-and nanoscale features to surpass the capabilities of traditional fabrication methods.Three-dimensional(3D)printing,or additive manufacturing,presents a solution to these challenges with benefits of rapid prototyping,customized geometries,and efficient production,particularly suited for miniaturized optical imaging devices.Various 3D printing methods have demonstrated advantages over traditional counterparts,yet challenges remain in achieving nanoscale resolutions.Two-photon polymerization lithography(TPL),a nanoscale 3D printing technique,enables the fabrication of intricate structures beyond the optical diffraction limit via the nonlinear process of two-photon absorption within liquid resin.It offers unprecedented abilities,e.g.alignment-free fabrication,micro-and nanoscale capabilities,and rapid prototyping of almost arbitrary complex 3D nanostructures.In this review,we emphasize the importance of the criteria for optical performance evaluation of imaging devices,discuss material properties relevant to TPL,fabrication techniques,and highlight the application of TPL in optical imaging.As the first panoramic review on this topic,it will equip researchers with foundational knowledge and recent advancements of TPL for imaging optics,promoting a deeper understanding of the field.By leveraging on its high-resolution capability,extensive material range,and true 3D processing,alongside advances in materials,fabrication,and design,we envisage disruptive solutions to current challenges and a promising incorporation of TPL in future optical imaging applications.

    Laser-based bionic manufacturing

    Xingran LiBaoyu ZhangTimothy JakobiZhenglei Yu...
    62-85页
    查看更多>>摘要:Over millions of years of natural evolution,organisms have developed nearly perfect structures and functions.The self-fabrication of organisms serves as a valuable source of inspiration for designing the next-generation of structural materials,and is driving the future paradigm shift of modern materials science and engineering.However,the complex structures and multifunctional integrated optimization of organisms far exceed the capability of artificial design and fabrication technology,and new manufacturing methods are urgently needed to achieve efficient reproduction of biological functions.As one of the most valuable advanced manufacturing technologies of the 21st century,laser processing technology provides an efficient solution to the critical challenges of bionic manufacturing.This review outlines the processing principles,manufacturing strategies,potential applications,challenges,and future development outlook of laser processing in bionic manufacturing domains.Three primary manufacturing strategies for laser-based bionic manufacturing are elucidated:subtractive manufacturing,equivalent manufacturing,and additive manufacturing.The progress and trends in bionic subtractive manufacturing applied to micro/nano structural surfaces,bionic equivalent manufacturing for surface strengthening,and bionic additive manufacturing aiming to achieve bionic spatial structures,are reported.Finally,the key problems faced by laser-based bionic manufacturing,its limitations,and the development trends of its existing technologies are discussed.

    Additive manufacturing of micropatterned functional surfaces:a review

    Aditya ChivateChi Zhou
    86-115页
    查看更多>>摘要:Over the course of millions of years,nature has evolved to ensure survival and presents us with a myriad of functional surfaces and structures that can boast high efficiency,multifunctionality,and sustainability.What makes these surfaces particularly practical and effective is the intricate micropatterning that enables selective interactions with microstructures.Most of these structures have been realized in the laboratory environment using numerous fabrication techniques by tailoring specific surface properties.Of the available manufacturing methods,additive manufacturing(AM)has created opportunities for fabricating these structures as the complex architectures of the naturally occurring microstructures far exceed the traditional ways.This paper presents a concise overview of the fundamentals of such patterned microstructured surfaces,their fabrication techniques,and diverse applications.A comprehensive evaluation of micro fabrication methods is conducted,delving into their respective strengths and limitations.Greater emphasis is placed on AM processes like inkjet printing and micro digital light projection printing due to the intrinsic advantages of these processes to additively fabricate high resolution structures with high fidelity and precision.The paper explores the various advancements in these processes in relation to their use in microfabrication and also presents the recent trends in applications like the fabrication of microlens arrays,microneedles,and tissue scaffolds.

    Novel fabrication techniques for ultra-thin silicon based flexible electronics

    Ju Young LeeJeong Eun JuChanwoo LeeSang Min Won...
    116-150页
    查看更多>>摘要:Flexible electronics offer a multitude of advantages,such as flexibility,lightweight property,portability,and high durability.These unique properties allow for seamless applications to curved and soft surfaces,leading to extensive utilization across a wide range of fields in consumer electronics.These applications,for example,span integrated circuits,solar cells,batteries,wearable devices,bio-implants,soft robotics,and biomimetic applications.Recently,flexible electronic devices have been developed using a variety of materials such as organic,carbon-based,and inorganic semiconducting materials.Silicon(Si)owing to its mature fabrication process,excellent electrical,optical,thermal properties,and cost efficiency,remains a compelling material choice for flexible electronics.Consequently,the research on ultra-thin Si in the context of flexible electronics is studied rigorously nowadays.The thinning of Si is crucially important for flexible electronics as it reduces its bending stiffness and the resultant bending strain,thereby enhancing flexibility while preserving its exceptional properties.This review provides a comprehensive overview of the recent efforts in the fabrication techniques for forming ultra-thin Si using top-down and bottom-up approaches and explores their utilization in flexible electronics and their applications.

    Digital light processing based multimaterial 3D printing:challenges,solutions and perspectives

    Jianxiang ChengShouyi YuRong WangQi Ge...
    151-175页
    查看更多>>摘要:Multimaterial(MM)3D printing shows great potential for application in metamaterials,flexible electronics,biomedical devices and robots,since it can seamlessly integrate distinctive materials into one printed structure.Among numerous MM 3D printing technologies,digital light processing(DLP)MM 3D printing is compatible with a wide range of materials from hydrogels to ceramics,and can print MM 3D structures with high resolution,high complexity and fast speed.This paper introduces the fundamental mechanisms of DLP 3D printing,and reviews the recent advances of DLP MM 3D printing technologies with emphasis on material switching methods and material contamination issues.It also summarizes a number of typical examples of DLP MM 3D printing systems developed in the past decade,and introduces their system structures,working principles,material switching methods,residual resin removal methods,printing steps,as well as the representative structures and applications.Finally,we provide perspectives on the directions of the further development of DLP MM 3D printing technology.

    Revealing precipitation behavior and mechanical response of wire-arc directed energy deposited Mg-Gd-Y-Zr alloy by tailoring aging procedures

    Xinzhi LiXuewei FangZhiyan ZhangShahid Ghafoor...
    176-201页
    查看更多>>摘要:Mg-Gd-Y-Zr alloy,as a typical magnesium rare-earth(Mg-RE)alloy,is gaining popularity in the advanced equipment manufacturing fields owing to its noticeable age-hardening properties and high specific strength.However,it is extremely challenging to prepare wrought components with large dimensions and complex shapes because of the poor room-temperature processability of Mg-Gd-Y-Zr alloy.Herein,we report a wire-arc directed energy deposited(DED)Mg-10.45Gd-2.27Y-0.52Zr(wt.%,GW102K)alloy with high RE content presenting a prominent combination of strength and ductility,realized by tailored nanoprecipitates through an optimized heat treatment procedure.Specifically,the solution-treated sample exhibits excellent ductility with an elongation(EL)of(14.6±0.1)%,while the aging-treated sample at 200 ℃ for 58 h achieves an ultra-high ultimate tensile strength(UTS)of(371±1.5)MPa.Besides,the aging-treated sample at 250 ℃ for 16 h attains a good strength-ductility synergy with a UTS of(316±2.1)MPa and a EL of(8.5±0.1)%.Particularly,the evolution mechanisms of precipitation response induced by various aging parameters and deformation behavior caused by nanoprecipitates type were also systematically revealed.The excellent ductility resulted from coordinating localized strains facilitated by active slip activity.And the ultra-high strength should be ascribed to the dense nano-β'hampering dislocation motion.Additionally,the shearable nano-β1 contributed to the good strength-ductility synergy.This work thus offers insightful understanding into the nanoprecipitates manipulation and performance tailoring for the wire-arc DED preparation of large-sized Mg-Gd-Y-Zr components with complex geometries.

    Effect of solution treatment on the microstructure,phase transformation behavior and functional properties of NiTiNb ternary shape memory alloys fabricated via laser powder bed fusion in-situ alloying

    Rui XiHao JiangGuichuan LiZhihui Zhang...
    202-224页
    查看更多>>摘要:Post-heat treatment is commonly employed to improve the microstructural homogeneity and enhance the mechanical performances of the additively manufactured metallic materials.In this work,a ternary(NiTi)91 Nb9(at.%)shape memory alloy was produced by laser powder bed fusion(L-PBF)using pre-alloyed NiTi and elemental Nb powders.The effect of solution treatment on the micro structure,phase transformation behavior and mechanical/functional performances was investigated.The in-situ alloyed(NiTi)91Nb9 alloy exhibits a submicron cellular-dendritic structure surrounding the supersaturated B2-NiTi matrix.Upon high-temperature(1273 K)solution treatment,Nb-rich precipitates were precipitated from the supersaturated matrix.The fragmentation and spheroidization of the NiTi/Nb eutectics occurred during solution treatment,leading to a morphological transition from mesh-like into rod-like and sphere-like.Coarsening of the β-Nb phases occurred with increasing holding time.The martensite transformation temperature increases after solution treatment,mainly attributed to:(i)reduced lattice distortion due to the Nb expulsion from the supersaturated B2-NiTi,and(ii)the Ti expulsion from the β-Nb phases that lowers the ratio Ni/Ti in the B2-NiTi matrix,which resulted from the microstructure changes from non-equilibrium to equilibrium state.The thermal hysteresis of the solutionized alloys is around 145 K after 20%pre-deformation,which is comparable to the conventional NiTiNb alloys.A short-term solution treatment(i.e.at 1273 K for 30 min)enhances the ductility and strength of the as-printed specimen,with the increase of fracture stress from(613±19)MPa to(781±20)MPa and the increase of fracture strain from(7.6±0.1)%to(9.5±0.4)%.Both the as-printed and solutionized samples exhibit good tensile shape memory effects with recovery rates>90%.This work suggests that post-process heat treatment is essential to optimize the microstructure and improve the mechanical performances of the L-PBF in-situ alloyed parts.

    Role of heterogenous microstructure and deformation behavior in achieving superior strength-ductility synergy in zinc fabricated via laser powder bed fusion

    Zhi DongChangjun HanYanzhe ZhaoJinmiao Huang...
    225-246页
    查看更多>>摘要:Zinc(Zn)is considered a promising biodegradable metal for implant applications due to its appropriate degradability and favorable osteogenesis properties.In this work,laser powder bed fusion(LPBF)additive manufacturing was employed to fabricate pure Zn with a heterogeneous microstructure and exceptional strength-ductility synergy.An optimized processing window of LPBF was established for printing Zn samples with relative densities greater than 99%using a laser power range of 80~90 W and a scanning speed of 900 mm s-1.The Zn sample printed with a power of 80 W at a speed of 900 mm s-1 exhibited a hierarchical heterogeneous microstructure consisting of millimeter-scale molten pool boundaries,micrometer-scale bimodal grains,and nanometer-scale pre-existing dislocations,due to rapid cooling rates and significant thermal gradients formed in the molten pools.The printed sample exhibited the highest ductility of~12.1%among all reported LPBF-printed pure Zn to date with appreciable ultimate tensile strength(~128.7 MPa).Such superior strength-ductility synergy can be attributed to the presence of multiple deformation mechanisms that are primarily governed by heterogeneous deformation-induced hardening resulting from the alternative arrangement of bimodal Zn grains with pre-existing dislocations.Additionally,continuous strain hardening was facilitated through the interactions between deformation twins,grains and dislocations as strain accumulated,further contributing to the superior strength-ductility synergy.These findings provide valuable insights into the deformation behavior and mechanisms underlying exceptional mechanical properties of LPBF-printed Zn and its alloys for implant applications.

    Polar-coordinate line-projection light-curing continuous 3D printing for tubular structures

    Huiyuan WangSiqin LiuXincheng YinMingming Huang...
    247-261页
    查看更多>>摘要:3D printing techniques offer an effective method in fabricating complex radially multi-material structures.However,it is challenging for complex and delicate radially multi-material model geometries without supporting structures,such as tissue vessels and tubular graft,among others.In this work,we tackle these challenges by developing a polar digital light processing technique which uses a rod as the printing platform.The 3D model fabrication is accomplished through line projection.The rotation and translation of the rod are synchronized to project and illuminate the photosensitive material volume.By controlling the distance between the rod and the printing window,we achieved the printing of tubular structures with a minimum wall thickness as thin as 50 micrometers.By controlling the width of fine slits at the printing window,we achieved the printing of structures with a minimum feature size of 10 micrometers.Our process accomplished the fabrication of thin-walled tubular graft structure with a thickness of only 100 micrometers and lengths of several centimeters within a timeframe of just 100 s.Additionally,it enables the printing of axial multi-material structures,thereby achieving adjustable mechanical strength.This method is conducive to rapid customization of tubular grafts and the manufacturing of tubular components in fields such as dentistry,aerospace,and more.