ABDELGHANY Ahmed M.El-Banna Aly A.A.LAMLOM Sobhi F.EL-SORADY Gawhara A....
109-122页
查看更多>>摘要:Background As the most widely cultivated fiber crop,cotton production depends on hybridization to unlock the yield potential of current varieties.A deep understanding of genetic dissection is crucial for the cultivation of enhanced hybrid plants with desired traits,such as high yield and fine fiber quality.In this study,the general combining ability(GCA)and specific combining ability(SCA)of yield and fiber quality of nine cotton parents(six lines and three testers)and eighteen-F1 crosses produced using a line×tester mating design were analyzed.Results The results revealed significant effects of genotypes,parents,crosses,and interactions between parents and crosses for most of the studied traits.Moreover,the effects of both additive and non-additive gene actions played a notably significant role in the inheritance of most of the yield and fiber quality attributes.The F-1 hybrids of(Giza 90×Aust)×Giza 86,Uzbekistan 1×Giza 97,and Giza 96×Giza 97 demonstrated superior performance due to their favorable integration of high yield attributes and premium fiber quality characteristics.Path analysis revealed that lint yield has the highest positive direct effect on seed cotton yield,while lint percentage showed the highest negative direct effect on seed cotton yield.Principal component analysis identified specific parents and hybrids asso-ciated with higher cotton yield,fiber quality,and other agronomic traits.Conclusion This study provides insights into identifying potential single-and three-way cross hybrids with supe-rior cotton yield and fiber quality characteristics,laying a foundation for future research on improving fiber quality in cotton.
查看更多>>摘要:Background Water deficit is an important problem in agricultural production in arid regions.With the advent of wholly mechanized technology for cotton planting in Xinjiang,it is important to determine which planting mode could achieve high yield,fiber quality and water use efficiency(WUE).This study aimed to explore if chemical topping affected cotton yield,quality and water use in relation to row configuration and plant densities.Results Experiments were carried out in Xinjiang China,in 2020 and 2021 with two topping method,manual top-ping and chemical topping,two plant densities,low and high,and two row configurations,i.e.,76 cm equal rows and 10+66 cm narrow-wide rows,which were commonly applied in matching harvest machine.Chemical topping increased seed cotton yield,but did not affect cotton fiber quality comparing to traditional manual topping.Under equal row spacing,the WUE in higher density was 62.4%higher than in the lower one.However,under narrow-wide row spacing,the WUE in lower density was 53.3%higher than in higher one(farmers'practice).For machine-harvest cotton in Xinjiang,the optimal row configuration and plant density for chemical topping was narrow-wide rows with 15 plants-m-2 or equal rows with 18 plants-m-2.Conclusion The plant density recommended in narrow-wide rows was less than farmers'practice and the density in equal rows was moderate with local practice.Our results provide new knowledge on optimizing agronomic man-agements of machine-harvested cotton for both high yield and water efficient.
查看更多>>摘要:Background Natural and synthetic plant growth regulators are essential for plant health,likewise these regula-tors also play a role in increasing organic production productivity and improving quality and yield stability.In the present study,we have evaluated the effects of foliar applied plant growth regulators,i.e.,moringa leaf extract(MLE)and mepiquat chloride(MC)alone and in combination MC and MLE on the conventional cotton cultivar(CIM 573)and transgenic one(CIM 598).The growth regulators were applied at the start of bloom,45 and 90 days after blooming.Results The application of MC and MLE at 90 days after blooming significantly improved the relative growth rate,net assimilation rate,the number of bolls per plant,and seed cotton yield.Likewise,the combined application of MLE and MC at 90 days after blooming significantly boosted the nitrogen uptake in locules,as well as the phosphorus and potassium uptake in the leaves of both cotton cultivars.The application of MLE alone has considerably improved the nitrogen uptake in leaves,and phosphorus and potassium contents in locules of Bt and conventional cotton cul-tivars.Similarly,Bt cotton treated with MLE at 90 days after blooming produced significantly higher ginning out turn and oil contents.Treatment in combination(MLE+MC)at 90 days after blooming produced considerably higher micronaire value,fiber strength,and staple length in conventional cultivar.Conclusion The natural growth enhancer,MLE is a rich source of minerals and zeatin,improving the nutrient absorp-tion and quality of cotton fiber in both conventional and Bt cotton cultivars.
查看更多>>摘要:Background The lint percentage of seed cotton is one of the most important parameters for evaluating seed cotton quality and affects its price.The traditional measuring method of lint percentage is labor-intensive and time-consum-ing;thus,an efficient and accurate measurement method is needed.In recent years,classification-based deep learn-ing and computer vision have shown promise in solving various classification tasks.Results In this study,we propose a new approach for detecting the lint percentage using MobileNetV2 and transfer learning.The model is deployed on a lint percentage detection instrument,which can rapidly and accurately deter-mine the lint percentage of seed cotton.We evaluated the performance of the proposed approach using a dataset comprising 66924 seed cotton images from different regions of China.The results of the experiments showed that the model with transfer learning achieved an average classification accuracy of 98.43%,with an average precision of 94.97%,an average recall of 95.26%,and an average F1-score of 95.20%.Furthermore,the proposed classification model achieved an average accuracy of 97.22%in calculating the lint percentage,showing no significant difference from the performance of experts(independent-sample t-test,t=0.019,P=0.860).Conclusion This study demonstrated the effectiveness of the MobileNetV2 model and transfer learning in calculating the lint percentage of seed cotton.The proposed approach is a promising alternative to traditional methods,provid-ing a rapid and accurate solution for the industry.
查看更多>>摘要:Background Plant hormones profoundly influence cotton growth,development,and responses to various stresses.Therefore,there is a pressing need for an efficient assay to quantify these hormones in cotton.In this groundbreak-ing study,we have established QuEChERS-HPLC‒MS/MS method,for the simultaneous detection of multiple plant hormones in cotton leaves,allowing the analysis and quantification of five key plant hormones.Results Sample extraction and purification employed 0.1%acetic acid in methanol and C18 for optimal recov-ery of plant hormones.The method applied to cotton demonstrated excellent linearity across a concentration range of 0.05-1 mg·L-1,with linear regression coefficients exceeding 0.99.The limits of quantification(LOQs)were 20 μg·kg-1 for GA3 and 5 μg·kg-1 for the other four plant hormones.Recovery rates for the five plant hormones matrix spiked at levels of 5,10,100,and 1000 μg·kg-1 were in the range of 79.07%to 98.97%,with intraday relative stand-ard deviations(RSDs)ranging from 2.11%to 8.47%.The method was successfully employed to analyze and quantify the five analytes in cotton leaves treated with plant growth regulators.Conclusion The study demonstrates that the method is well-suited for the determination of five plant hormones in cotton.It exhibits excellent selectivity and sensitivity in detecting field samples,thus serving as a robust tool for in-depth research into cotton physiology.
查看更多>>摘要:Background Cotton is an economically important crop.It is crucial to find an effective method to improve cot-ton yield,and one approach is to decrease the abscission of cotton bolls and buds.However,the lack of knowl-edge of the genetic and molecular mechanisms underlying cotton boll abscission traits has hindered genetic improvements.Results Pearson's correlation analysis revealed a significant positive correlation between boll abscission rates 1(AR1)and boll abscission rates 2(AR2).A genome-wide association study was conducted on 145 loci that exhibited high polymorphism and were uniformly distributed across 26 chromosomes(pair).The study revealed 18,46,and 62 markers that were significantly associated with boll abscission,fiber quality,and yield traits(P<0.05),explaining 1.75%-7.13%,1.16%-9.58%,and 1.40%-5.44%of the phenotypic variation,respectively.Notably,the marker MON_SHIN-1584b was associated with the cotton boll abscission trait,whereas MON_CGR5732a was associated with cotton boll abscission and fiber quality traits.Thirteen of the marker loci identified in this study had been previously reported.Based on phenotypic effects,six typical cultivars with elite alleles related to cotton boll abscission,fiber quality,and yield traits were identified.These cultivars hold great promise for widespread utilization in breeding programs.Conclusions These results lay the foundation for understanding the molecular regulatory mechanism of cotton boll abscission and provide data for the future improvement of cotton breeding.
查看更多>>摘要:Background Cotton(Gossypium hirsutum L.)is one of the most significant fibre and cash crops and plays an impor-tant role in Indian industrial and agricultural economies.However,over the years quantity and quality have been hampered by the pest leafhopper.Leafhopper alone has been shown to cause yield losses of up to 40%.In this study,screening and evaluation were performed to identify and categorize 100 cotton genotypes along with 5 checks as resistant,moderately resistant,sensitive and highly sensitive to leafhoppers.Results A total of hundred genotypes were evaluated along with five checks for leafhopper resistance.Based on the screening results,a total of 19 genotypes were resistant to leafhoppers,which was on par with the findings of the check KC 3.The contents of total soluble sugar,total soluble protein,and total free amino acids were signifi-cantly positively correlated with the mean grade,whereas total phenols content and trichome density were signifi-cantly negatively correlated with the susceptibility grade.However,based on screening and biochemical analysis,the genotypes KC 2,JR-23,Samaru-26-T,D 4,TCH 1728,RS 253,and B-61-1862 exhibited high resistance to leafhopper.Conclusion According to the findings of this study,choosing genotypes with high total phenolics content together with high trichome density and low contents of total soluble sugar,total soluble protein,and free amino acids may aid in the development of resistant genotypes.
AHMED Ali IjazKHAN Azeem IqbalNEGM Mohamed A.M.IQBAL Rida...
196-206页
查看更多>>摘要:Cotton is one of the most important fiber crops that plays a vital role in the textile industry.Its production has been unstable over the years due to climate change induced biotic stresses such as insects,diseases,and weeds,as well as abiotic stresses including drought,salinity,heat,and cold.Traditional breeding methods have been used to breed climate resilient cotton,but it requires a considerable amount of time to enhance crop tolerance to insect pests and changing climatic conditions.A promising strategy for improving tolerance against these stresses is genetic engineering.This review article discusses the role of genetic engineering in cotton improvement.The essential con-cepts and techniques include genome editing via clustered regularly interspaced short palindromic repeats(CRISPR)/CRISPR-associated protein 9(CRISPR-Cas9),overexpression of target genes,downregulation using RNA interference(RNAi),and virus-induced gene silencing(VIGS).Notably,the Agrobacterium-mediated transformation has made signif-icant contributions to using these techniques for obtaining stable transgenic plants.
查看更多>>摘要:Cotton has enormous economic potential,providing high-quality protein,oil,and fibre.But the comprehensive utilization of cottonseed is limited by the presence of pigment gland and its inclusion.Pigment gland is a common characteristic of Gossypium genus and its relatives,appearing as visible dark opaque dots in most tissues and organs of cotton plants.Secondary metabolites,such as gossypol,synthesized and stored in the cavities of pigment glands act as natural phytoalexins,but are toxic to humans and other monogastric animals.However,only a few cotton genes have been identified as being associated with pigment gland morphogenesis to date,and the developmental processes and regulatory mechanism involved in pigment gland formation remain largely unclear.Here,the research progress on the process of pigment gland morphogenesis and the genetic basis of cotton pigment glands is reviewed,for providing a theoretical basis for cultivating cotton with the ideal pigment gland trait.
查看更多>>摘要:Single-cell RNA sequencing(scRNA-seq)is one of the most advanced sequencing technologies for studying tran-scriptome landscape at the single-cell revolution.It provides numerous advantages over traditional RNA-seq.Since it was first used to profile single-cell transcriptome in plants in 2019,it has been extensively employed to perform different research in plants.Recently,scRNA-seq was also quickly adopted by the cotton research community to solve lots of scientific questions which have been never solved.In this comment,we highlighted the significant progress in employing scRNA-seq to cotton genetic and genomic study and its future potential applications.