首页期刊导航|颗粒学报(英文版)
期刊信息/Journal information
颗粒学报(英文版)
颗粒学报(英文版)

郭慕孙

双月刊

1674-2001

jcsp@home.ipe.ac.cn

010-82629146

100080

北京中关村北二条1号中科院过程所内

颗粒学报(英文版)/Journal China ParticuologyCSCDCSTPCD北大核心EISCI
查看更多>>本刊以创精品与国际化为办刊方针,旨在反映中国颗粒学研究的最新成果、及时追踪国际颗粒学领域的最新动态。学报主要刊登国内外颗粒学领域中的研究、工程和应用方面的优秀原始论文,包括颗粒测试与表征、颗粒制备与处理、流态化、气溶胶和超微颗粒等。本刊不仅设有论坛、研究论文、研究简报等内容,还有书评、会议信息与报道、测试仪器进展等栏目,便于相关人士进行学术交流,并为科技成果的展示提供平台,信息十分丰富。本刊已陆续被美国化学文摘(CA),俄罗斯文摘杂志(AJ),剑桥科学文摘(CSA)以及中国科技论文与引文数据库(CSTPCD)收录。China PARTICUOLOGY, a bimonthly interdisciplinary journal in English, purports to present the best papers in research, engineering and application in the overall field of PARTICUOLOGY, including particle characterization, particle preparation, aerosol, fluidization and ultra-fine particles. The word PARTICUOLOGY was coined to correspond to its Chinese terminology, which denotes both the science and technology of particles. Although the journal is China-based, it serves as a medium for all accepted papers of international origin, especially the best papers representing current advances in the world. Besides scientific and engineering papers, the journal includes the following sections: R & D notes, Current events, Editorials reviews, Forum for comments, opinions and qualified speculations, News on books, instruments and meetings.Now, China Particuology has been indexed by CA, AJ , CSA and CSTPCD.??读者对象(Audiences): 中国颗粒学会会员、国内外从事颗粒学和颗粒技术研究和生产的大专院校师生、科研院所及企业的研究人员和技术人员。 Member of Chinese Society of Particuology, and researchers or experts who are engaged in the study of particle sciences and technology coming from colleges, institutes and corporations all over the world.
正式出版
收录年代

    Numerical simulation of square shaped particle sedimentation

    Govind SharmaBahni Ray
    107-116页
    查看更多>>摘要:Direct numerical simulations of square particle sedimentation in a viscous incompressible fluid are presented to examine the effects of sharp edges for various particle-to-fluid density ratios and different initial inclination angles.The settling process exhibits four different motion regimes;non-oscillatory,non-uniform centered oscillatory,uniform off-centered oscillatory,and non-uniform off-centered(irregular)oscillatory.At moderate density ratios,we observe that the rotational motion of settling square particle varies with the initial inclination angle.We employ Dynamic Time Warping and Fast Fourier Transform to analyze translational and angular velocities.Oscillating systems are described using phase-space plots,and a chaotic phenomenon is observed at a higher density ratio.

    A simulation study for a cost-effective PET-like detector system intended to track particles in granular assemblies

    Josephine OppotschAntonios AthanassiadisMiriam FritschFritz-Herbert Heinsius...
    117-125页
    查看更多>>摘要:Since many industrial applications rely on the processing of densely packed and moving granular ma-terial,obtaining bulk internal information on the particle movement inside the reactors is of great importance.Such information can be delivered by Positron Emission Particle Tracking(PEPT).By marking pellets with a positron-emitting radioisotope,the position of these tracer particles can be determined via the time-of-flight differences of the emitted gamma-ray pairs.The current paper proposes a PET-like detector system based on cost-effective organic plastic scintillators instead of the more common but expensive inorganic scintillators.This system is currently under construction and was tested for its resolution and efficiency in this simulation study.Using Monte Carlo simulations and the software toolkit Geant4,three different geometries(an empty glass box,a generic grate system,and a cubic box of 1 m3 completely filled with pellets)were investigated,leading to a spatial resolution in the millimeter range and an efficiency,defined as the ratio of reconstructed decay locations to simulated decays,of 2.7%,1.4%,and 0.3%.

    Copper-based nanomaterials as peroxidase candidates for intelligent colorimetric detection and antibacterial applications

    Yanyan HuangHuimin ZhongCong JiangJiahui Yang...
    126-135页
    查看更多>>摘要:With natural polyphenol compound tannic acid(TA)as the ingredient,copper tannate(CuTA)nanolayer material was formed by self-assembly under the conditions of heating and copper ion.Copper ion and tannic acid could coordinate to form Cu-O-C structure which was similar to the Fe-N-C structure of natural heme enzymes.In addition,the obtained CuTA nanomaterial possessed excellent peroxidase-like catalytic activity and stability.Based on this excellent enzymatic activity,CuTA nanomaterials could be used for colorimetric detection of hydrogen peroxide with a smartphone and decomposition of organic dyes.Based on the structural characteristics and catalytic activity,the copper tannate nanozymes could also serve as potential antibacterial reagents to effectively inhibit the growth of gram-negative and positive bacteria in a low hydrogen peroxide level.This work may promote the exploration of novel peroxidase mimetics and broaden the applications of nanozymes.

    A numerical and experimental comparison of heat transfer in a quasi two-dimensional packed bed

    Matthias TyslikMirko EbertMartin SchiemannSiegmar Wirtz...
    136-144页
    查看更多>>摘要:Heat transfer plays a major role in many industrial processes taking place in packed beds.An accurate and reliable simulation of the heat exchange between particles is therefore crucial for a reliable operation and to optimize the processes in the bed.The discrete ordinates method(DOM)provides an established numerical technique to model radiative heat transfer in granular media that offers the possibility to consider the directional dependence of the radiation propagation.In this work,DOM is compared with Monte Carlo ray tracing,which provides an alternative method for heat transfer simulations.Geomet-rically simple configurations are used to investigate the influence of the angular discretization on the accuracy of the results and the computation time in both methods.The obtained insights are then transferred to a more complex configuration of a quasi two-dimensional test rig consisting of metal rods for which also experimental results are available.Our results show that both DOM and Monte Carlo ray tracing allow for an accurate simulation of heat transfer in packed beds.Monte Carlo ray tracing requires thereby computation times that are surprisingly competitive(although still somewhat slower)compared to DOM and allows for an easier computation of highly accurate reference solutions.In our preliminary comparison to the experimental test rig,Monte Carlo ray tracing also provides the advantage that it can more easily model highly specular materials such as stainless steel.Both methods are comparable for diffuse materials such as magnesium oxide.

    CFD-DEM simulation of fluorination reaction in fluidized beds with local grid and time refinement method

    Mofan QiuLin JiangRongzhen LiuYaping Tang...
    145-157页
    查看更多>>摘要:The gas-solid reaction process with wide particle size distribution is extensively used in the chemical engineering field,especially the particle reacts with the gas gradually,such as fluorination reactions in fluidized beds.When the computational fluid dynamics-discrete element method(CFD-DEM)is used for the coupling simulation of multiphase and polydisperse particle reaction system,the grid size directly affects the accuracy of flow field information and simulation of chemical reaction.Furthermore,particle calculation time step will directly affect the efficiency of coupling calculation.In this work,a local grid and time step refinement method is proposed to simulate multiphase and polydisperse particle fluid-ization reaction system.In this method,the refined DEM grids are automatically generated in the computational domain around the fine particles,and the detailed fluid phase information is obtained with the interpolation algorithm.In the two-phase coupling process,particles are divided into different groups based on physical properties,each group has its own independent time step.The multistage conical-cylindrical spouted bed is proposed for the fluorination reaction process;the operating gas ve-locity range of the polydisperse particle system is extended by the new design while the particle size distribution changes with the gas-solid reaction process.It is demonstrated that the local grid and time step refinement method can improve the accuracy and efficiency of the traditional CFD-DEM method in the reaction process simulation,which describes a polydisperse particle system with wide particle size distribution.Aimed at improving the simulation accuracy and efficiency,this paper will be helpful for simulating the particle reaction process in the gas-solid fluidized bed and beneficial for the development of the CFD-DEM method.

    Convective drying of wood chips:Accelerating coupled DEM-CFD simulations with parametrized reduced single particle models

    Lucas ReinekingJonas FischerAli MjalledEnric Illana...
    158-167页
    查看更多>>摘要:The simulation of industry-scale reactive bulks is challenging due to the complex interaction between fluid and particles.The particles in the bulk and their interaction with the fluid flow can be described by combined Discrete Element Method-Computational Fluid Dynamics(DEM-CFD)models.However,the computational cost of the Finite Volume(FV)methods deployed in these models can become prohibi-tively expensive,especially for high inner-particle resolution.Single particle Reduced Models(RMs)can be used to achieve both fast and accurate descriptions of the processes in each particle.As an example of bulk systems comprising heat and mass transfer,we compared FV and RM simulations for the drying of wood chips in a bulk reactor.A manifold-based nonlinear interpolation was applied to resolve changing boundary conditions for the RM.Our simulations showed that RMs provide accurate values for the thermodynamic state variables of the particles.Furthermore,the time required for the bulk simulation was reduced by 67%with the RMs.It is evident that simulations with high inner-particle resolution can be accelerated by RMs if manifold-based nonlinear interpolation is used to address changing boundary conditions.

    Sono-assembly of folate-decorated curcumins/alginate core-shell microcomplex and its targeted delivery and pH/reduction dual-triggered release

    Qingye MengShuangling ZhongJingfei WangZhenqian Zhang...
    168-177页
    查看更多>>摘要:In this study,sodium alginate(SA),a non-toxic natural polysaccharide with good biocompatibility and biodegradability,was developed for targeted delivery of curcumin(CUR)in tumor therapy.The strategy is to sulfhydrylate the folic acid(FA)modified SA,and the CUR dissolved in ethyl acetate(EAC)phase is coated in microcapsules by a quick,efficient and environment-friendly sonochemical method.The EAC in the microcapsule core is volatile,which can be recycled and reused to reduce cost.The prepared mi-crocapsules(FA-RSMCs@CUR)exhibited similar toxicity to free curcumin in anti-tumour evaluation in vitro.FA-RSMCs@CUR also exhibited effective antibacterial properties in the antibacterial evaluation in vitro.It is expected to become a low-cost tumor targeting vector in the future,and has the potential to be promoted in clinical application.

    Soft coarse-grained particle model for particle-fluid systems

    Yanhao YeJi XuWei Ge
    178-193页
    查看更多>>摘要:By modeling a group of neighboring real particles as a single coarse-grained particle(CGP),discrete particle method(DPM)is now capable of simulating industrial-scale particle-fluid systems.However,a systematic approach to determine the CGP properties and develop their interaction models is still lacking,which casts uncertainty on the predictivity of the method.In this study,collisions between predefined particle groups are analyzed to construct kernel functions for modeling the CGPs and then the model parameters are determined by equating the statistical properties of the CGPs and the real particles in the physical process studied.This approach is implemented for homogeneous cooling of granular gas,then demonstrated effective in simulating experimental fluidized beds.

    Ray tracing particle image velocimetry-Challenges in the application to a packed bed

    Christin VeltenMirko EbertChristian LessigKatharina Z?hringer...
    194-208页
    查看更多>>摘要:Ray tracing Particle Image Velocimetry(RT-PIV)is an optical technique for high resolution velocity measurements in challenging optical systems,such as transparent packed beds,that uses ray tracing to correct for distortions introduced by transparent geometries in the light paths.The ray tracing based correction is a post processing step applied to the raw PIV particle images before classical PIV evaluation.In this study,RT-PIV is performed in the top layer of a body centred cubic(bcc)sphere packing with gaseous flow,where optical access is obtained by the use of transparent N-BK7 glass balls with a diameter of d=40 mm.RT-PIV introduces new experimental and numerical challenges,for example a limited field of view,illumination difficulties,a very large required depth of field and high sensitivity to geometric parameters used in the ray tracing correction.These challenges and their implications are the main scope and discussed in the present work.Further,the validation of the ray tracing reconstruction step is presented and examples for the obtained corrected vector fields in a packed bed are given.The results show the strength of the method in reconstructing velocity fields behind transparent spheres that would not have been accessible by optical measurement techniques without the ray tracing correction.

    Comprehensive Euler/Lagrange modelling including particle erosion for confined gas-solid flows

    Guiherme A.Novelletto RicardoMartin Sommerfeld
    209-235页
    查看更多>>摘要:The present research aims to assess the capability of a comprehensive Euler/Lagrange approach for predicting gas-solid flows and the associated solid particle erosion.The open-source code OpenFOAM® 4.1 was used to carry out the numerical simulations,where the standard Lagrangian libraries were substantially extended to account for all necessary models.Particles are tracked considering both translational and rotational motion as well as all relevant forces,such as gravity/buoyancy,drag and transverse lift due to shear and particle rotation.The tracking time step was dynamically adapted ac-cording to the locally relevant time scales,which drastically reduces computational times.Stochastic approaches are adopted to model particle turbulent dispersion,particle collisions with rough walls and particle-particle interactions.Five solid particle erosion models,available in the literature,were considered to estimate pipe bend erosion.Three study cases are provided to validate the adopted nu-merical approach and erosion models extensively.The first case intends to evaluate the ability of the extended CFD code to predict the behaviour of gas-solid flows in pneumatic conveying systems.This goal is achieved by comparing the numerical results with the experimental data obtained by Huber(1997)and Huber and Sommerfeld(1994,1998)in a pneumatic conveying system.Here,the importance of considering inter-particle collisions and surface roughness for predicting particle velocity,mass flux and mean diameter distributions in gas-solid flows is highlighted.The second and third case intend to evaluate the ability of the erosion models in estimating bend erosion in diluted gas-solid flows.The erosion data obtained experimentally by Mazumder et al.(2008)and Solnordal et al.(2015)in very dilut pneumatic conveying systems is used for validating the numerical results,neglecting now inter-particle collisions and two-way coupling.Besides a comprehensive analysis of the different influential properties on erosion,the innovation of the present study is as follows.For the first time also a temporal modifi-cation of the surface roughness due to the erosion was considered in the simulations obtained from previous measurements(Novelletto Ricardo & Sommerfeld,2020).As the surface roughness is increased due to erosion,eventually erosion rate becomes lower.This is the result of diminishing wall collision frequency.Simulations for several degrees of surface roughness showed that larger roughness is coupled with a drastic reduction of erosion.Hence,numerical simulations neglecting wall surface roughness are not realistic.The consideration of a particle size distribution instead of mono-sized computations showed a possible reduction of erosion rate.The detailed analysis of the different single-particle erosion models revealed that the model proposed by Oka et al.(2005)and Oka and Yoshida(2005)yields the best agreement with the measurements,however particle and wall properties are needed.