首页期刊导航|颗粒学报(英文版)
期刊信息/Journal information
颗粒学报(英文版)
颗粒学报(英文版)

郭慕孙

双月刊

1674-2001

jcsp@home.ipe.ac.cn

010-82629146

100080

北京中关村北二条1号中科院过程所内

颗粒学报(英文版)/Journal China ParticuologyCSCDCSTPCD北大核心EISCI
查看更多>>本刊以创精品与国际化为办刊方针,旨在反映中国颗粒学研究的最新成果、及时追踪国际颗粒学领域的最新动态。学报主要刊登国内外颗粒学领域中的研究、工程和应用方面的优秀原始论文,包括颗粒测试与表征、颗粒制备与处理、流态化、气溶胶和超微颗粒等。本刊不仅设有论坛、研究论文、研究简报等内容,还有书评、会议信息与报道、测试仪器进展等栏目,便于相关人士进行学术交流,并为科技成果的展示提供平台,信息十分丰富。本刊已陆续被美国化学文摘(CA),俄罗斯文摘杂志(AJ),剑桥科学文摘(CSA)以及中国科技论文与引文数据库(CSTPCD)收录。China PARTICUOLOGY, a bimonthly interdisciplinary journal in English, purports to present the best papers in research, engineering and application in the overall field of PARTICUOLOGY, including particle characterization, particle preparation, aerosol, fluidization and ultra-fine particles. The word PARTICUOLOGY was coined to correspond to its Chinese terminology, which denotes both the science and technology of particles. Although the journal is China-based, it serves as a medium for all accepted papers of international origin, especially the best papers representing current advances in the world. Besides scientific and engineering papers, the journal includes the following sections: R & D notes, Current events, Editorials reviews, Forum for comments, opinions and qualified speculations, News on books, instruments and meetings.Now, China Particuology has been indexed by CA, AJ , CSA and CSTPCD.??读者对象(Audiences): 中国颗粒学会会员、国内外从事颗粒学和颗粒技术研究和生产的大专院校师生、科研院所及企业的研究人员和技术人员。 Member of Chinese Society of Particuology, and researchers or experts who are engaged in the study of particle sciences and technology coming from colleges, institutes and corporations all over the world.
正式出版
收录年代

    Insight into the role of ethylene glycol on thermodynamics and nucleation kinetics of dimethyl terephthalate in mixed solvent system

    Yujin ZhangChunyan ShiJing TangLi Liu...
    1-12页
    查看更多>>摘要:Dissolution and nucleation are two essential processes for industrial crystallization.This paper in-vestigates the effect of ethylene glycol addition on the crystallization behavior of dimethyl terephthalate(DMT)in solution.The DMT solubility in mixed solvent system(methanol-ethylene glycol)was deter-mined by isothermal satiation approach,and the solubility was associated using seven models.The model fitting results were consistent with the experimental values.Based on the results,the metastable zone width(MSZW)of DMT was detected by the polythermal approach;the modified Sangwal's theory was used to investigate the nucleation behavior,which can provide a new way of thought for better analysis of the crystallization behavior.The results demonstrated that MSZW was associated with various elements,such as cooling rate,saturation temperature and mass fraction of ethylene glycol.The addition of ethylene glycol slowed down the nucleation rate as shown by the broadening of MSZW.We derive the solid-liquid interface energy,the nucleation driving force,the critical nucleation size and the critical Gibbs free energy according to the classical nucleation theory.It is demonstrated that the nucleation driving force and the solid-liquid interface energy are dependent and jointly influence the MSZW.

    Preparation of baicalin colon-targeted granules and its intervention effect on ulcerative colitis in rats

    Yongqing HuangYuxin ZhouYao ShenJin Wang...
    13-21页
    查看更多>>摘要:Baicalin(BA)is a flavonoid extracted from the dried root of Scutellaria baicalensis Georgi with excellent antioxidant and anti-inflammatory biological activities.In this study,Eudragit S100 was used as the colonic target material to prepare BA colonic targeting granules(EBCGs)based on plasticizer dry powder coating technology to improve the targeting transportation performance of BA.In vitro studies showed that EBCGs with pH-sensitive properties were successfully prepared by plasticizer dry powder coating,and in vivo animal imaging studies showed that EBCGs could deliver BA to the colon and inhibit the release of BA in the upper gastrointestinal tract(GIT).In vivo studies showed that EBCGs had good therapeutic effects in colitis,which reduced expression levels of tumor necrosis factor alpha(TNF-α)and interleukin-1β(IL-1β)and increased superoxide dismutase(SOD)activities in the colonic tissues of rats with colitis.In conclusion,Eudragit S100 could be used for the preparation of multi-unit oral colon-targeted formulations by plasticizer dry powder coating technology,and our prepared EBCGs had good colon-targeting properties,which could improve the therapeutic effect and provide a potential application for ulcerative colitis(UC).

    Micro-sized nanoaggregates:Spray-drying-assisted fabrication and applications

    Dan-Lei YangRong-Kun LiuYan WeiQian Sun...
    22-48页
    查看更多>>摘要:The applications of nanoparticles suffer from their extremely small size and intrinsic trend of agglom-eration.Rearranging nanoparticles to form micro-sized nanoaggregates(MNAs)with increased size,ordered structure,as well as controllable size,shape,and morphology is a crucial step in various fields of science and technology to maintain the unique characteristics of nanoparticles while obtaining greatly enhanced or new performance at the microscale.The structure of MNAs prominently affects their functionality,which is determined by the arrangement of nanoparticles and the interaction between primary particles.Several methods have been proposed to prepare the MNAs,in which spray-drying technology stands out considering the feasibility,scalability for industry,cost,and efficiency.Forced assembly of nanoparticles through spray-drying under tunable process parameters yields diverse physical properties and structural arrangements of nanoparticles of the MNAs,they therefore exhibit enormous potential in a wide range of application fields.This review presents the construction and applications of spray-dried MNAs.The factors that influence the size,morphology,and structure of the MNAs are discussed in detail.In addition,the outstanding application performance resulting from the tightly packed nanoparticles in regular-shaped MNAs obtained by the spray-drying process is illustrated.

    Influence of pore structure on thermal stress distribution inside coal particles during primary fragmentation

    Kai QiaoShan ZhongSiyang TangKe Yang...
    49-61页
    查看更多>>摘要:Thermal stress is an important reason of coal particle primary fragmentation,during which the role of pore structure is ambiguous.Thermal stress induced fragmentation experiments were conducted with low volatile coal/char particles,and the results show that the fragmentation severity enhances with increasing porosity.Various porous thermal stress models were developed with finite element method,and the influences of the pore shape,size,position and porosity on the thermal stress were discussed.The maximum thermal stress inside particle increases with pore curvature,the pore position affects the thermal stress more significantly at the particle center and surface.The expectation of the maximum tensile thermal stress linearly increases with porosity,making the particles with higher porosity easier to fragment,contrary to the conclusion deduced from the devolatilization theory.The obtained results are valuable for the analysis of different thermal processes concerning the thermal stresses of the solid feedstocks.

    Effect of operational and geometric parameters on the hydrodynamics of a Wurster coater:A CFD-DEM study

    Yinqiang SongTuo ZhouRuiqi BaiMan Zhang...
    62-76页
    查看更多>>摘要:A coupled CFD-DEM method was used to study the hydrodynamics of a Wurster coater.Firstly,the CFD part of the model was validated by the accurate prediction of the pressure drops over a pseudo-2D fluidized bed under various gas velocities.The effect of gas velocity,gap height,tube length and batch volume of the particles on the cycle time and the residence time of the particles was thoroughly investigated.The central jet gas velocity ui was found to speed up the particle cycle but undermine the coating efficiency.The gas velocity at the horizontal transport zone u2 was able to promote the horizontal transport of the particles but should not be too high,otherwise,it would obstruct the normal falling back of the particles in the downward zone.Big gap heights would decrease the coating efficiency but tube length had little impact on that.The increment of batch volume would commonly abase the cycle time and the working efficiency under a given u1.The de-fluidization problem arose when the batch volume increased to 550 mL.However,this problem could be swept out by the optimization of u1 and u2.In a mixture of different sizes,the coarse particles enjoyed higher coating efficiency and could travel closer to the nozzles.This may shield the fine particles from getting enough coating liquids,and thus coarse particles and fine particles were not recommended to get coated in the same batch.

    Multi-point temperature measurements in packed beds using phosphor thermometry and ray tracing simulations

    Guangtao XuanMirko EbertSimson Julian RodriguesNicole Vorhauer-Huget...
    77-88页
    查看更多>>摘要:Packed bed reactors are commonly found in the process industry,for example in flame-assisted calci-nation for cement production.Understanding the heat transfer inside the bed is essential for process control,product quality and energy efficiency.Here we propose a technique to determine the internal temperature distribution of packed beds based on a combination of lifetime-based phosphor ther-mometry,ray tracing simulations,and assimilation of temperature data using finite element heat transfer simulations.To establish and validate the technique,we considered a reproducible regular packing of 6 mm diameter aluminum spheres,with one of the spheres in the top layer being electrically heated.If a sphere inside the packing is coated with thermographic phosphors and excitation light is directed to-wards the packing,luminescence from the coated sphere exits the packed bed after multiple reflection and the sphere's temperature can be determined.Isothermal measurements showed that the temper-ature obtained by phosphor thermometry is independent of the luminescent sphere location.When imaging the luminescence on a camera,the luminescence distribution in recorded image depended,however,on the position of the sphere.Therefore,in setups with multiple phosphor-coated spheres,their signals can be separated using a least squares fit.We demonstrate the approach using a setup with three luminescent spheres and validated the temperature readings against thermocouple measurements.To obtain the spatial signatures for individual sphere positions required for the least squares fit,ray tracing simulations were used.These provide an efficient alternative to single sphere measurements that are only practical for regular spherical packed beds.Multi-point measurements were used as input to a finite element heat transfer simulations to determine parameters such as particle-to-particle air gap distance.With these,the full temperature distribution inside the bed could be assimilated from the measured values.

    Investigating the inflow into a granular bed using a locally resolved method

    Maximilian Br?mmerMaik ScharnowskiEnric Illana MahiquesSiegmar Wirtz...
    89-101页
    查看更多>>摘要:Discrete Element Method-Computational Fluid Dynamics(DEM/CFD)simulations of industrial-scale granular systems employ spatial averaging(porous media approach)for the fluid-particle interaction in the whole domain,which can lead to poor accuracy,for instance at flow inlets,as local particle bulk morphology is not resolved.This paper presents an approach where the interstitial flow in crucial areas with large gradients can be resolved locally in an otherwise unresolved domain,so that a mixed resolved-unresolved method is realized.As a generic example to show the feasibility and performance of the new approach,the inflow of ambient air into a flat-bottom hopper through a narrow orifice is investigated.In an experimental setup,the vertical profile of the pressure decay through the inlet and across the packing is chosen for com-parison with respective simulations.Results obtained with the conventional porous media method and the locally resolved approach are compared to these experiments for varying volume flow rates and for two different particle shapes.Spheres of different size as well as dodecahedrons are examined.It is found that although averaging methods already provide good approximations,the locally resolved method can improve the result especially when conventional drag laws are not applicable due to wall effects or if large velocity gradients exist.

    Synergistic precipitant powered self-assembly of papain for cross-linked enzyme crystals preparation

    Qi HaoPan GuoHonghai WangMin Su...
    102-112页
    查看更多>>摘要:In this study,we prepared cross-linked enzyme crystals(CLECs)of papain to further broaden the application of the enzyme with high activity in extreme environments.Initially,papain crystals were successfully obtained based on the micro-batch,batch,and expanded batch crystallization experiments.Specifically,ammonium sulfate and polyethylene glycol 6000(PEG6000)were synergistically used as the precipitants,while L-cysteine was applied to enhance the activity of papain.Furthermore,the interaction between L-cysteine and papain was modeled by molecular docking technique.It was found that L-cysteine could form a hydrogen bond with aspartic acid residue(Asp)at site 158,and the electrostatic attraction with lysine residue(Lys)at site 156 was also quite obvious.Then the enzyme crystals were cross-linked by glutaraldehyde at optimized conditions.The papain CLECs were identified by various methods,and it was found that the thermal stability and enzymatic activity both increased compared to the raw enzyme.More importantly,it could be applied at more rigorous conditions,for example,pH of 4.

    Precise phase adjustment and antibacterial property of copper sulfide particles in confined mesoporous silica nanoreactor

    Shiyu XuJinyong WuZhongzhen RenDechao Niu...
    113-121页
    查看更多>>摘要:Bacteria-caused wound infection greatly threatens human health,thus developing an efficient and safe antibacterial agent without drug resistance is still a great challenge.Herein,a confined vulcanization strategy is proposed to construct copper sulfides-loaded dual-mesoporous silica nanospheres(Cux-Sy@DMSNs)with various crystal phases for reactive oxygen species(ROS)-mediated and photothermal antibacterial application.With the pore confinement of DMSNs,the crystal phases of copper sulfides including CuS,Cu9S5 and Cui.96S can be easily controlled by changing the vulcanization temperature.The relationships between the crystal phases and photothermal properties as well as peroxidase-like activity of copper sulfides were systematically investigated.Results show that the obtained CuS@DMSNs exhibited higher photothermal ability with remarkable photothermal conversion efficiency of 36.86%in the second near-infrared region(NIR-II)and better peroxidase-like activity,compared to those of Cu9S5@DMSNs and Cu1.96S@DMSNs.As a result,the in vitro experiments showed the good antibacterial effect against both gram-negative E.coli and gram-positive S.aureus under 1064 nm laser irradiation and the presence of H2O2.Besides,the CCK-8 assay indicated that CuS@p-DMSNs have minimal cytotoxicity against normal human umbilical vein endothelial cells at the ranged concentrations.Therefore,the resultant CuS@p-DMSNs could act as a promising antibacterial agent for deep wound bacterial infection treatment.

    A plant growth chamber system equipped with aerosol generators for studying aerosol-vegetation interactions

    Masao GenSeiji IkawaMasahiro YamaguchiFong Zyin Lim...
    122-132页
    查看更多>>摘要:Understanding aerosol-vegetation interactions is vital in ecosystems.However,the interactions remain elusive partly due to the lack of suitable plant growth chamber systems.Particularly,deposition of submicron particles on leaf surfaces is challenging due to its low deposition velocities compared to larger particles.In this work,we present a plant-growth chamber that was used to study the effect of sub-micron black carbon(BC)particles on the growth and photosynthesis of plants.The chamber system simultaneously enables the growth of multiple plants in pots and the deposition of submicron particles onto them.Two spraying methods assisted by ultrasonic and electrostatic forces were employed as aerosol generators to realize the particle deposition.The flow regime inside the chamber was numeri-cally calculated to predict the transportation of aerosol particles,suggesting the optimal operating conditions of the chamber.The gas-phase particle size distribution measurements showed that gener-ated BC particles were suspended in submicron diameter ranges.The aerosol generators were examined in the chamber using three conductor and insulator substrates as a model of plant leaves.Microscope observations and spectroscopic analysis ascertained that submicron BC particles generated from our generators were deposited on all substrate surfaces.Using the developed chamber system,systematic studies can be performed to advance the fundamental understanding of aerosol-vegetation interactions.