首页期刊导航|农业科学学报(英文)
期刊信息/Journal information
农业科学学报(英文)
中国农业科学院农业信息研究所
农业科学学报(英文)

中国农业科学院农业信息研究所

翟虎渠

月刊

2095-3119

zgnykx@mail.caas.net.cn

010-82106283 82106280

100081

北京中关村南大街12号

农业科学学报(英文)/Journal Journal of Integrative AgricultureCSCDCSTPCD北大核心SCI
查看更多>>本刊创刊于2002年,由中国农业科学院、中国农学会主办,中国农业科学院农业信息研究所承办。刊登农牧业基础科学和应用科学的研究论文,覆盖作物科学、动物科学、农业环境、农业经济与管理等领域。
正式出版
收录年代

    Basal defense is enhanced in a wheat cultivar resistant to Fusarium head blight

    Xinlong GaoFan LiYikun SunJiaqi Jiang...
    1238-1258页
    查看更多>>摘要:Fusarium head blight(FHB),mainly caused by the fungal pathogen Fusarium graminearum,is one of the most destructive wheat diseases.Besides directly affecting the yield,the mycotoxin residing in the kernel greatly threatens the health of humans and livestock.Xinong 979(XN979)is a widely cultivated wheat elite with high yield and FHB resistance.However,its resistance mechanism remains unclear.In this study,we studied the expression of genes involved in plant defense in XN979 by comparative transcriptomics.We found that the FHB resistance in XN979 consists of two lines of defense.The first line of defense,which is constitutive,is knitted via the enhanced basal expression of lignin and jasmonic acid(JA)biosynthesis genes.The second line of defense,which is induced upon F.graminearum infection,is contributed by the limited suppression of photosynthesis and the struggle of biotic stress-responding genes.Meanwhile,the effective defense in XN979 leads to an inhibition of fungal gene expression,especially in the early infection stage.The formation of the FHB resistance in XN979 may coincide with the breeding strategies,such as selecting high grain yield and lodging resistance traits.This study will facilitate our understanding of wheat-F.graminearum interaction and is insightful for breeding FHB-resistant wheat.

    Discovery and structure-activity relationship studies of novel tetrahydro-β-carboline derivatives as apoptosis initiators for treating bacterial infections

    Shanshan SuHongwu LiuJunrong ZhangPuying Qi...
    1259-1273页
    查看更多>>摘要:Developing and excavating new agrochemicals with highly active and safe is an important tactic for protecting crop health and food safety.In this paper,to discover the new bactericide candidates,we designed,prepared a new type of 1,2,3,4-tetrahydro-β-carboline(THC)derivatives and evaluated the in vitro and in vivo bioactivities against the Xanthomonas oryzae pv.oryzae(Xoo),Xanthomonas axonopodis pv.citri(Xac),and Pseudomonas syringae pv.actinidiae(Psa).The in vitro bioassay results exhibited that most title molecules possessed good activity toward the three plant pathogenic bacteria,the compound A17 showed the most active against Xoo and Xac with EC50 values of 7.27 and 4.89 mg mL-1 respectively,and compound A8 exhibited the best inhibitory activity against Psa with EC50 value of 4.87 mg mL-1.Pot experiments showed that compound A17 exhibited excellent in vivo antibacterial activities to manage rice bacterial leaf blight and citrus bacterial canker,with protective efficiencies of 52.67 and 79.79%at 200 mg mL-1,respectively.Meanwhile,compound A8 showed good control efficiency(84.31%)against kiwifruit bacterial canker at 200 mg mL-1.Antibacterial mechanism suggested that these compounds could interfere with the balance of the redox system,damage the cell membrane,and induce the apoptosis of Xoo cells.Taken together,our study revealed that tetrahydro-β-carboline derivatives could be a promising candidate model for novel broad-spectrum bactericides.

    Characterization of Domeless receptors and the role of BdDomeless3 in anti-symbiont-like virus defense in Bactrocera dorsalis

    Wei ZhangShaoyang LiRong LiJinzhi Niu...
    1274-1284页
    查看更多>>摘要:The Janus kinase/signal transducers and activators of transcription(JAK/STAT)signaling pathway play a pivotal role in innate immunity.Among invertebrates,Domeless receptors serve as the key upstream regulators of this pathway.In our study on Bactrocera dorsalis,we identified three cytokine receptors:BdDomeless1,BdDomeless2,and BdDomeless3.Each receptor encompasses five fibronectin-type-Ⅲ-like(FN Ⅲ)extracellular domains and a transmembrane domain.Furthermore,these receptors exhibit the increased responsiveness to diverse pathogenic challenges.Notably,only BdDomeless3 is upregulated during symbiont-like viral infections.Moreover,silencing BdDomeless3 enhanced the infectivity of Bactrocera dorsalis cripavirus(BdCV)and B.dorsalis picorna-like virus(BdPLV),underscoring BdDomeless3's crucial role in antiviral defense of B.dorsalis.Following the suppression of Domeless3 expression,six antimicrobial peptide genes displayed decreased expression,potentially correlating with the rise in viral infectivity.To our knowledge,this is the first study identifying cytokine receptors associated with the JAK/STAT pathway in tephritid flies,shedding light on the immune mechanisms of B.dorsalis.

    Development and formation of wing cuticle based on transcriptomic analysis in Locusta migratoria during metamorphosis

    Jing ZhangZhaochen WuShuo LiHe Huang...
    1285-1299页
    查看更多>>摘要:Wings are an important flight organ of insects.Wing development is a complex process controlled by a series of genes.The flightless wing pad transforms into a mature wing with the function of migratory flight during the nymph-to-adult metamorphosis.However,the mechanism of wing morphogenesis in locusts is still unclear.This study analyzed the microstructures of the locust wing pads at pre-eclosion and the wings after eclosion and performed the comparative transcriptome analysis.RNA-seq identified 25,334 unigenes and 3,430 differentially expressed genes(DEGs)(1,907 up-regulated and 1,523 down-regulated).The DEGs mainly included cuticle development(LmACPs),chitin metabolism(LmIdgf4),lipid metabolism-related genes,cell adhesion(Integrin),zinc finger transcription factors(LmSalm,LmZF593 and LmZF521),and others.Functional analysis based on RNA interference and hematoxylin and eosin(H&E)staining showed that the three genes encoded zinc finger transcription factors are essential for forming wing cuticle and maintaining morphology in Locusta migratoria.Finally,the study found that the LmSalm regulates the expression of LmACPs in the wing pads at pre-eclosion,and LmZF593 and LmZF521 regulate the expression of LmIntegrin/LmIdgf4/LmHMT420 in the wings after eclosion.This study revealed that the molecular regulatory axis controls wing morphology in nymphal and adult stages of locusts,offering a theoretical basis for the study of wing development mechanisms in hemimetabolous insects.

    Invasion of fall armyworm led to the succession of maize pests in Southwest China

    Zezheng FanYifei SongShengyuan ZhaoKongming Wu...
    1300-1314页
    查看更多>>摘要:The invasive fall armyworm Spodoptera frugiperda(J.E.Smith)invaded Asia in 2018,colonizing the tropical and southern subtropical regions as well as migrating with the monsoons into Northeast Asia during spring and summer.This has resulted in widespread infestations,with significant impacts on maize production in various Asian countries.Previous studies have shown that the invasion of this pest can alter the species relationships of maize pests,but the actual impact on maize pest management is still unclear.This study investigated the changes in maize pest occurrence and pesticide use in the annual breeding areas of S.frugiperda in Yunnan Province and the Guangxi Zhuang Autonomous Region of China during 2017-2021,based on surveys and interviews with small farmers in maize production.The results showed that S.frugiperda has emerged as the dominant species among maize pests after invasion and colonization,replacing traditional pests such as Ostrinia furnacalis,Spodoptera litura,Agrotis ypsilon,and Rhopalosiphum maidis.The variety of pesticides used for maize pest control has changed from chlorpyrifos,lambda-cyhalothrin,and acetamiprid to emamectin benzoate-based pesticides with high effectiveness against S.frugiperda.Furthermore,the frequency of maize pest chemical applications has increased from an average of 5.88 to 7.21 times per season,with the amounts of pesticides used in summer and autumn maize being significantly higher than in winter and spring maize,thereby increasing application costs by more than 35%.The results of this study clarified the impact of S.frugiperda invasion on maize pest community succession and chemical pesticide use in tropical and south subtropical China,thereby providing a baseline for modifying the regional control strategies for maize pests after the invasion of this relatively new pest.

    miR-24-3p promotes proliferation and inhibits apoptosis of porcine granulosa cells by targeting P27

    Shengjie ShiLutong ZhangLiguang WangHuan Yuan...
    1315-1328页
    查看更多>>摘要:Ovarian follicle development is associated with the physiological functions of granulosa cells(GCs),including proliferation and apoptosis.The level of miR-24-3p in ovarian tissue of high-yielding Yorkshire×Landrace sows was significantly higher than that of low-yielding sows.However,the functions of miR-24-3p on GCs are unclear.In this study,using flow cytometry,5-ethynyl-2'-de-oxyuridine(EdU)staining,and cell count,we showed that miR-24-3p promoted the proliferation of GCs increasing the proportion of cells in the S phase and upregulating the expression of cell cycle genes,moreover,miR-24-3p inhibited GC apoptosis.Mechanistically,on-line prediction,bioinformatics analysis,a luciferase reporter assay,RT-qPCR,and Western blot results showed that the target gene of miR-24-3p in proliferation and apoptosis is cyclin-dependent kinase inhibitor 1B(P27/CDKN1B).Furthermore,the effect of miR-24-3p on GC proliferation and apoptosis was attenuated by P27 overexpression.These findings suggest that miR-24-3p regulates the physiological functions of GCs.

    Responses of growth performance,antioxidant function,small intestinal morphology and mRNA expression of jejunal tight junction protein to dietary iron in yellow-feathered broilers

    Kaiwen LeiHao WuJerry W SpearsXi Lin...
    1329-1337页
    查看更多>>摘要:This study aimed to investigate the dose-effect of iron on growth performance,antioxidant function,intestinal morphology,and mRNA expression of jejunal tight junction protein in 1-to 21-d-old yellow-feathered broilers.A total of 720 1-d-old yellow-feathered male broilers were allocated to 9 treatments with 8 replicate cages of 10 birds per cage.The dietary treatments were consisted of a basal diet(contained 79.6 mg Fe kg-1)supplemented with 0,20,40,60,80,160,320,640,and 1,280 mg Fe kg-1 in the form of FeSO4·7H2O.Compared with the birds in the control group,birds supplemented with 20 mg Fe kg-1 had higher average daily gain(ADG)(P<0.0001).Adding 640 and 1,280 mg Fe kg-1 significantly decreased ADG(P<0.0001)and average daily feed intake(ADFI)(P<0.0001)compared with supplementation of 20 mg Fe kg-1.Malondialdehyde(MDA)concentration in plasma and duodenum increased linearly(P<0.0001),but MDA concentration in liver and jejunum increased linearly(P<0.05)or quadratically(P<0.05)with increased dietary Fe concentration.The villus height(VH)in duodenum and jejunum,and the ratio of villus height to crypt depth(V/C)in duodenum decreased linearly(P<0.05)as dietary Fe increased.As dietary Fe increased,the jejunal relative mRNA abundance of claudin-1 decreased linearly(P=0.001),but the jejunal relative mRNA abundance of zona occludens-1(ZO-1)and occludin decreased linearly(P<0.05)or quadratically(P<0.05).Compared with the supplementation of 20 mg Fe kg-1,the supplementation of 640 mg Fe kg-1 or higher increased(P<0.05)MDA concentrations in plasma,duodenum,and jejunum,decreased VH in the duodenum and jejunum,and the addition of 1,280 mg Fe kg-1 reduced(P<0.05)the jejunal tight junction protein(claudin-1,ZO-1,occludin)mRNA abundance.In summary,640 mg of supplemental Fe kg-1 or greater was associated with decreased growth performance,increased oxidative stress,disrupted intestinal morphology,and reduced mRNA expression of jejunal tight junction protein.

    Membrane vesicles derived from Streptococcus suis serotype 2 induce cell pyroptosis in endothelial cells via the NLRP3/Caspase-1/GSDMD pathway

    Keda ShiYan LiMinsheng XuKunli Zhang...
    1338-1353页
    查看更多>>摘要:Streptococcus suis serotype 2(S.suis 2)is a zoonotic pathogen that clinically causes severe swine and human infections(such as meningitis,endocarditis,and septicemia).In order to cause widespread diseases in different organs,S.suis 2 must colonize the host,break the blood barrier,and cause exaggerated inflammation.In the last few years,most studies have focused on a single virulence factor and its influences on the host.Membrane vesicles(MVs)can be actively secreted into the extracellular environment contributing to bacteria-host interactions.Gram-negative bacteria-derived outer membrane vesicles(OMVs)were recently shown to activate host Caspase-11-mediated non-canonical inflammasome pathway via deliverance of OMV-bound lipopolysaccharide(LPS),causing host cell pyroptosis.However,little is known about the effect of the MVs from S.suis 2(Gram-positive bacteria without LPS)on cell pyroptosis.Thus,we investigated the molecular mechanism by which S.suis 2 MVs participate in endothelial cell pyroptosis.In this study,we used proteomics,electron scanning microscopy,fluorescence microscope,Western blotting,and bioassays,to investigate the MVs secreted by S.suis 2.First,we demonstrated that S.suis 2 secreted MVs with an average diameter of 72.04 nm,and 200 proteins in MVs were identified.Then,we showed that MVs were transported to cells via mainly dynamin-dependent endocytosis.The S.suis 2 MVs activated NLRP3/Caspase-1/GSDMD canonical inflammasome signaling pathway,resulting in cell pyroptosis,but it did not activate the Caspase-4/-5 pathway.More importantly,endothelial cells produce large amounts of reactive oxygen species(ROS)and lost their mitochondrial membrane potential under induction by S.suis 2 MVs.The results in this study suggest for the first time that MVs from S.suis 2 were internalized by endothelial cells via mainly dynamin-dependent endocytosis and might promote NLRP3/Caspase-1/GSDMD pathway by mitochondrial damage,which produced mtDNA and ROS under induction,leading to the pyroptosis of endothelial cells.

    A nanobody-based blocking enzyme-linked immunosorbent assay for detecting antibodies against pseudorabies virus glycoprotein E

    Huanhuan LüPinpin JiSiyu LiuZiwei Zhang...
    1354-1368页
    查看更多>>摘要:Pseudorabies(PR)is an acute infectious disease of pigs caused by the PR virus(PRV)and results in great economic losses to the pig industry worldwide.PRV glycoprotein E(gE)-based enzyme-linked immunosorbent assay(ELISA)has been used to distinguish gE-deleted vaccine-immunized pigs from wild-type virus-infected pigs to eradicate PR in some countries.Nanobody has the advantages of small size and easy genetic engineering and has been a promising diagnostic reagent.However,there were few reports about developing nanobody-based ELISA for detecting anti-PRV-gE antibodies.In the present study,the recombinant PRV-gE was expressed with a bacterial system and used to immunize the Bactrian camel.Then,two nanobodies against PRV-gE were screened from the immunized camel by phage display technique.Subsequently,two nanobody-HRP fusion proteins were expressed with HEK293T cells.The PRV-gE-Nb36-HRP fusion protein was selected as the probe for developing the blocking ELISA(bELISA)to detect anti-PRV-gE antibodies.Through optimizing the conditions of bELISA,the amount of coated antigen was 200 ng per well,and dilutions of the fusion protein and tested pig sera were separately 1:320 and 1:5.The cut-off value of bELISA was 24.20%,and the sensitivity and specificity were 96.43 and 92.63%,respectively.By detecting 233 clinical pig sera with the developed bELISA and a commercial kit,the results showed that the coincidence rate of two assays was 93.99%.Additionallly,epitope mapping showed that PRV-gE-Nb36 recognized a conserved conformational epitope in different reference PRV strains.Simple,great stability and low-cost nanobody-based bELISA for detecting anti-PRV-gE antibodies were developed.The bELISA could be used for monitoring and eradicating PR.

    Integrating phosphorus management and cropping technology for sustainable maize production

    Haiqing GongYue XiangJiechen WuLaichao Luo...
    1369-1380页
    查看更多>>摘要:Achieving high maize yields and efficient phosphorus(P)use with limited environmental impacts is one of the greatest challenges in sustainable maize production.Increasing plant density is considered an effective approach for achieving high maize yields.However,the low mobility of P in soils and the scarcity of natural P resources have hindered the development of methods that can simultaneously optimize P use and mitigate the P-related environmental footprint at high plant densities.In this study,meta-analysis and substance flow analysis were conducted to evaluate the effects of different types of mineral P fertilizer on maize yield at varying plant densities and assess the flow of P from rock phosphate mining to P fertilizer use for maize production in China.A significantly higher yield was obtained at higher plant densities than at lower plant densities.The application of single super-phosphate,triple super-phosphate,and calcium magnesium phosphate at high plant densities resulted in higher yields and a smaller environmental footprint than the application of diammonium phosphate and monoammonium phosphate.Our scenario analyses suggest that combining the optimal P type and application rate with a high plant density could increase maize yield by 22%.Further,the P resource use efficiency throughout the P supply chain increased by 39%,whereas the P-related environmental footprint decreased by 33%.Thus,simultaneously optimizing the P type and application rate at high plant densities achieved multiple objectives during maize production,indicating that combining P management with cropping techniques is a practical approach to sustainable maize production.These findings offer strategic,synergistic options for achieving sustainable agricultural development.