首页期刊导航|信息与电子工程前沿(英文)
期刊信息/Journal information
信息与电子工程前沿(英文)
浙江大学出版社
信息与电子工程前沿(英文)

浙江大学出版社

月刊

2095-9184

杭州浙大路38号浙大学报英文版编辑部

信息与电子工程前沿(英文)/Journal Frontiers of Information Technology & Electronic EngineeringCSCDCSTPCD北大核心EISCI
正式出版
收录年代

    算网协同:构建新型信息基础设施和新型服务模式

    王晓云孙滔崔勇Rajkumar BUYYA...
    629-632,后插1-后插2页

    算力感知网络:一种算网一体的系统设计

    王晓云段晓东姚柯翰孙滔...
    633-644,后插3页
    查看更多>>摘要:网络资源的覆盖范围日益广泛,算力资源也逐渐成为能够提供泛在计算服务的基础设施。然而,在广域网络,底层网络和计算资源缺乏密切的研究或协同设计,仍然存在计算服务调度缓慢、数据分发不灵活、数据传输效率低等问题。本文提出算力感知网络(CAN)的系统架构设计,其核心贡献在于引入感知平面来收集、管理并综合计算和网络的信息。这样,感知平面、控制平面和数据平面组成一个闭环控制系统,增强了整个系统的感知能力、决策能力和数据转发功能。为了使能CAN系统,本文提出三项关键技术:算力路由、弹性广播和广域高吞吐传输。本文以人工智能(AI)模型训练、推理和离线参数传输为例,展示CAN的适用性,并指出未来的一些研究方向。

    网络架构算力感知网络算网一体

    移动边缘计算中联邦学习的能效策略综述

    颜康束妮娜吴韬刘春生...
    645-663,后插4页
    查看更多>>摘要:随着第五代网络技术和物联网的蓬勃发展,终端用户设备数量和各种各样的应用程序正在激增,从而在网络边缘产生大量数据。为了高效处理这些数据,创新性的移动边缘计算框架已经出现,以实现靠近用户流量的低延迟和高效的计算能力。近年来,由于其保护隐私的优势,联邦学习在边缘计算中展示出经验性的成功。因此,它成为各种机器学习任务中分析和处理分布式数据有前景的解决方案,这些任务是移动边缘计算中的主要工作负载。遗憾的是,终端用户设备通常由容量有限的电池供电,在执行高能耗的联邦学习任务时会面临挑战。为应对这些挑战,已有许多节能策略被提出。考虑到目前缺乏全面总结和分类这些策略的调查,我们对移动边缘计算中联邦学习的节能策略的最新进展作了全面调查。具体而言,首先介绍了联邦学习中的系统模型和能耗模型,涉及计算和通信。然后,分析了提高能效方面的挑战,并从3个角度总结了节能策略:基于学习的策略、资源分配策略和客户端选择策略。对这些策略作了详细分析,比较了它们的优势和劣势。此外,通过展示实验结果,直观展现了这些策略对联邦学习性能的影响。最后,讨论了节能联邦学习若干潜在研究方向。

    移动边缘计算联邦学习能量高效

    一种面向多类任务的云-边-端协同卸载策略及其性能评估

    白小军张扬武海星王宇廷...
    664-684,后插5页
    查看更多>>摘要:如何在用户设备、边缘网络和云数据中心之间协同卸载任务是一个非常有趣且具有挑战性的研究课题。本文研究了云-边-端协同环境下的任务卸载决策、建模解析和系统参数优化问题,旨在权衡不同的性能指标。根据任务的不同延迟要求,将任务分类为延迟敏感型任务和延迟容忍型任务。为了在满足延迟敏感型任务的延迟需求的同时尽可能处理更多的延迟容忍型任务,提出一种云-边-端协同任务卸载策略,其中,延迟敏感型任务和延迟容忍型任务分别遵循访问阈值控制策略和损失策略。建立一个四维连续时间马尔可夫链作为系统机理模型,利用高斯-赛德尔方法,求解系统模型的平稳概率分布。在此基础上,给出延迟敏感型任务的阻塞率和两类任务的平均延迟等性能指标。通过数值实验评估了系统性能,并通过仿真实验验证了所提任务卸载策略的有效性。最后,针对不同延迟敏感型任务比例,优化了边缘网络缓冲区中的访问阈值,实现了系统开销的最小化。

    边缘计算卸载策略云-边-端协同马尔可夫链成本函数

    基于声誉机制的算力网络资源利用率和用户满意度联合优化

    付月霞王晶陆璐唐琴琴...
    685-700,中插1-中插3,后插6页
    查看更多>>摘要:随着算力和网络融合的发展,在算力网络(CFN)中统筹考虑多个提供商的算力资源和网络资源逐渐成为一种新趋势。然而,由于每个算网资源提供商(CNRP)只考虑自身利益,与其他CNRP存在竞争关系,因此引入多个CNRP会造成缺乏信任和难以统一调度的问题。此外,多个并发用户的需求各不相同,因此迫切需要研究如何在多对多的基础上优化匹配用户和CNRP,从而提高用户满意度,保证和提高有限资源的利用率。首先采用基于贝塔分布函数的声誉模型衡量CNRP可信度,并提出基于性能的声誉更新模型。其次,将问题形式化为一个约束多目标优化问题,并使用改进的快速精英非支配排序遗传算法(NSGA-Ⅱ)找到可行解。本文进行大量仿真实验评估所提算法。仿真结果表明,所提模型、问题表述、和NSGA-Ⅱ是有效的,NSGA-Ⅱ可以找到CFN的帕累托集,提高用户满意度和资源利用率。此外,帕累托集所提供的一组解决方案根据实际情况为用户和CNRP的多对多匹配问题提供更多选择。

    算力网络资源调度基于性能的声誉用户满意度

    图神经网络与深度强化学习结合的算力网络资源分配方法

    韩雪莹谢明熹禹可黄小红...
    701-712,后插7页
    查看更多>>摘要:由于具有特定计算需求及超低延迟传输需求的实时应用呈现爆炸性增长,算力网络成为热门研究课题。当前算力网络的主要挑战是如何权衡网络资源与计算资源,作出联合最优决策。尽管近年来深度强化学习在网络优化方面取得一定进步,但这些方法仍然受到拓扑结构变化的影响,特别是对未在训练中出现的网络拓扑作出决策。本文提出一个基于图神经网络的深度强化学习框架,使得智能体在进行网络与计算资源联合优化的同时,兼具拓扑泛化性,更加适应网络拓扑的动态变化。借助图神经网络的泛化优势,该方法可在变动的网络拓扑中运行,且相比基于传统深度强化学习的方法具有更强的优化决策能力。

    算力网络路由优化深度学习图神经网络资源分配

    面向6G算力网络的联邦学习通信效率优化

    蔡逸卓雷波赵倩颖彭竞...
    713-727,中插4-中插7,后插8页
    查看更多>>摘要:联邦学习以参与设备之间协作训练全局模型的形式,有效地解决了数据隐私等问题。然而,在复杂的网络环境中,网络拓扑和设备算力等因素极其影响联邦学习的训练和通信过程。作为一种算力可测、可感知、可分配、可调度和可管理的新型网络架构和范式,6G中的算力网络恰好能有效支持联邦学习训练并提高其通信效率。根据业务需求、资源负载、网络条件和设备算力等信息,算力网络可以决策联邦学习的训练进而实现通信效率提高。为了提高复杂网络环境下联邦学习的通信效率,本文研究了其在6G算力网络中的通信效率优化方法,针对不同的网络条件和参与设备的算力作出训练过程的决策。仿真实验基于联邦学习中存在的两种架构,依据算力信息调度设备参与训练,并在传输模型参数的过程中实现通信效率的优化。仿真结果表明,本文提出的方法能够很好地应对复杂的网络情况,有效平衡参与设备的本地训练延迟差异,提高在传输模型参数时的通信效率,并提高网络中的资源利用率。

    算力网络协同通信效率联邦学习两种架构

    基于非独立同分布和长尾数据的双解耦联邦学习

    王朝晖李红娇李晋国胡仁豪...
    728-741,后插9页
    查看更多>>摘要:联邦学习(FL)作为一种最前沿的分布式机器学习训练范式,旨在通过协作训练客户端模型生成全局模型,且不泄露本地私有数据。然而客户端数据同时呈现出非独立同分布(non-IID)和长尾分布时会严重影响全局模型准确率,从而对联邦学习造成根本性挑战。针对非独立同分布和长尾数据,提出一种通过模型和逻辑校准的双解耦联邦学习(FedDDC)框架。该模型具有3个特点。首先,解耦全局模型为特征提取器和分类器,从而微调受异构数据影响的组件。针对有偏特征提取器,提出客户端置信度重加权算法辅助校准,该算法为每个客户端分配最优权重。针对有偏分类器,采用分类器再平衡方法进行微调。其次,校准并集成经过客户端重加权和分类器重平衡的逻辑,从而得到无偏逻辑。最后,首次在非独立同分布和长尾分布下的联邦学习中使用解耦知识蒸馏,通过提取无偏模型知识提高全局模型准确率。大量实验表明,在非独立同分布和长尾数据上FedDDC优于最先进的联邦学习算法。

    联邦学习非独立同分布长尾数据解耦学习知识蒸馏

    基于稀疏重构预处理的OTFS雷达通信一体化目标参数估计算法

    张贞凯商晓可肖悦
    742-754,后插10页
    查看更多>>摘要:正交时频空间(orthogonal time-frequency space,OTFS)是近年来针对高多普勒无线场景提出的一种新的调制技术。针对OTFS雷达通信一体化系统的参数估计问题,本文提出一种基于稀疏重构预处理的参数估计方法,以降低传统加权子空间拟合(weighted subspace fitting,WSF)算法的计算量。首先,构建了 OTFS一体化回波信号模型。然后,对回波信号进行时域变换,将目标角度与距离分离,利用稀疏重建算法对检测目标的距离和角度进行粗估计。最后,利用WSF算法以粗估计为中心对搜索进行细化,得到准确的估计。仿真实验证明了所提参数估计算法的有效性和优越性。

    雷达通信一体化系统正交时频空目标参数估计稀疏重构加权子空间拟合

    SEVAR:用于虚拟和增强现实场景的双目事件相机数据集

    董宇达陈泽涛何欣李立俊...
    755-762,后插11页
    查看更多>>摘要:近年来,事件相机以其低延迟、高动态范围和高时间分辨率等特点受到越来越多关注。这些特点使它特别适合应用于虚拟和增强现实(VR/AR)领域。为了促进事件相机在VR/AR应用中的三维感知和定位算法的发展,我们引入用于虚拟和增强现实场景的双目事件相机数据集(SEVAR)。该数据集以头戴式设备为主体,覆盖几种常见的室内场景序列,包括面向事件相机的快速运动和高动态范围的挑战性情景。我们发布了第一组VR/AR场景的感知和定位数据集,该数据集由双目事件体相机、30 Hz双目标准相机和1000 Hz惯性测量单元采集。相机的放置方式、视场和分辨率与商用头戴设备(如Meta Quest Pro)相似。所有传感器在硬件上进行时间同步。为更好地开展定位精度和轨迹的评估,提供了由动作捕捉系统捕捉的位姿真值。数据集见https://github。com/sevar-dataset/sevar。

    同步定位与地图构建(SLAM)数据集事件相机虚拟和增强现实(VR/AR)