中国科学:物理学 力学 天文学(英文版)2024,Vol.67Issue(7) :65-71.DOI:10.1007/s11433-023-2342-4

Principal components of nuclear mass models

Xin-Hui Wu Pengwei Zhao
中国科学:物理学 力学 天文学(英文版)2024,Vol.67Issue(7) :65-71.DOI:10.1007/s11433-023-2342-4

Principal components of nuclear mass models

Xin-Hui Wu 1Pengwei Zhao2
扫码查看

作者信息

  • 1. Department of Physics,Fuzhou University,Fuzhou 350108,China;State Key Laboratory of Nuclear Physics and Technology,School of Physics,Peking University,Beijing 100871,China
  • 2. State Key Laboratory of Nuclear Physics and Technology,School of Physics,Peking University,Beijing 100871,China
  • 折叠

Abstract

Principal component analysis(PCA)is employed to extract the principal components(PCs)present in nuclear mass models for the first time.The effects from different nuclear mass models are reintegrated and reorganized in the extracted PCs.These PCs are recombined to build new mass models,which achieve better accuracy than the original theoretical mass models.This comparison indicates that using the PCA approach,the effects contained in different mass models can be collaborated to improve nuclear mass predictions.

Key words

nuclear mass/principal component analysis/nuclear models/statistical methods

引用本文复制引用

基金项目

State Key Laboratory of Nuclear Physics and Technology,Peking University(NPT2023KFY02)

China Postdoctoral Science Foundation(2021M700256)

National Key R&D Program of China(2018YFA0404400)

National Natural Science Foundation of China(11935003)

National Natural Science Foundation of China(11975031)

National Natural Science Foundation of China(12141501)

National Natural Science Foundation of China(12070131001)

Highperformance Computing Platform of Peking University()

出版年

2024
中国科学:物理学 力学 天文学(英文版)
中国科学院

中国科学:物理学 力学 天文学(英文版)

CSTPCD
影响因子:0.91
ISSN:1674-7348
浏览量1
段落导航相关论文