首页期刊导航|光学精密工程
期刊信息/Journal information
光学精密工程
中国科学院长春光学精密机械与物理研究所 中国仪器仪表学会
光学精密工程

中国科学院长春光学精密机械与物理研究所 中国仪器仪表学会

曹健林

月刊

1004-924X

gxjmgc@ciomp.ac.cn;gxjmgc@sina.com

0431-86176855

130033

长春市东南湖大路3888号

光学精密工程/Journal Optics and Precision EngineeringCSCD北大核心CSTPCDEI
查看更多>>《光学 精密工程》学报简介 《光学 精密工程》(Optics and Precision Engineering)是中国科学院主管,中国科学院长春光学精密机械与物理研究所、中国仪器仪表学会、中国微米纳米技术学会共同主办的国际性学术期刊。本刊于1959年创刊《光学机械》,1966年停刊,1975年复刊,1993年更名为《光学 精密工程》。现为16开本,双月刊,科学出版社出版,国内外公开发行。 《光学 精密工程》首任主编为我国第一代著名光学家王大珩,随后担任主编的有张作梅、唐九华和陈星旦,现任主编是中国科学院副院长、中国科学院光电研究院院长曹健林。50余年的变迁,《光学 精密工程》从初创到成长、壮大,特别是改革开放以来的发展,从一个侧面展现了我国现代应用光学与微纳米技术和精密工程交叉学科崛起与发展的梗概和脉络。现在,《光学 精密工程》已成为目前中国历史最悠久、在国内外发行量较大、影响面相对广泛的现代应用光学与微纳米技术和精密工程交叉学科的学术期刊,赢得了国内外同行的普遍认同和信誉,受到包括诺贝尔奖获得者Charles H.Townes教授在内的一些著名国际学者的高度评价,被认为是“有中国特色的刊物”,奠定了它在中国科技期刊中的重要地位。 《光学 精密工程》自创刊以来,为本学科科研工作的正确开展,为加速科研成果的诞生,为发挥预见与导向作用,为我国现代应用光学与微纳米技术和精密工程赶超国际先进行列发挥了不可替代的桥梁与纽带作用。这几年来,《光学 精密工程》继续以提高学术质量来增强核心竞争力,在办刊理念、学术品位、编辑质量、出版发行与宣传,以及运用现代信息技术等方面,进一步加快与国际接轨的步伐。 《光学 精密工程》的编辑委员会由世界各地有权威的学者组成,编辑部设在中国科学院长春光学精密机械与物理研究所。《光学 精密工程》刊载现代应用光学与微纳米技术和精密工程领域的高水平理论性和应用性的科研成果,内容包括:1)空间光学;2)光学材料和纳米材料;3)光学设计和系统;4)激光和激光技术应用;5)光通讯;6)微纳技术与精密机械;7)医用光学;8)先进加工制造技术;9)信息理论与信息处理技术10)测试技术与设备以及有关交叉学科等。    《光学 精密工程》的读者对象为相关专业从事科研、教学、生产、运行的研究人员和工程技术人员以及研究生等。面向国际学科发展的前沿领域,以国家知识创新体系的建设为依托,跟踪热点课题加强组织和征集优秀稿件,优先发表具有创新性、导向性和权威性的学术论文。所有录用稿件均以印刷版、光盘版、网络版等同时出版。《光学 精密工程》被国外著名检索系统,如美国工程索引(EI)、英国科学文摘(INSPEC)、美国化学文摘(CA)、美国剑桥科学文摘(CSA)、俄罗斯文摘杂志(AJ)等多种检索刊物和数据库收录。 《光学 精密工程》编辑委员会期望与科学家、作者、读者、出版社和信息系统团结起来,在共同的目标下相互支持与合作,在我国政府及其主管部门的组织和协调下,共同营造我国科技期刊发展的优良环境,为创办国际一流的学术期刊不懈努力,让中国科技期刊加快融入国际学术交流。
正式出版
收录年代

    小波DehazeFormer网络的道路交通图像去雾

    夏平李子怡雷帮军王雨蝶...
    1915-1928页
    查看更多>>摘要:针对道路交通雾图像对比度低、细节丢失、模糊和失真的问题,提出了一种小波DehazeFormer模型的道路交通图像去雾方法.为提升模型去雾能力,构建了编解码结构的小波DehazeFormer网络,编码器以DehazeFormer与选择性核特征融合模块(Selective kernel feature fusion,SKFF)级联作为骨干网络的基本单元,编码部分由三级这样的基本单元构成,以融合图像的原始信息和去雾后的信息,更好地捕获雾图中关键特征;中间特征层采用局部残差结构,并加入卷积注意力机制(Convolutional Block Attention Module,CBAM),对不同级别的特征赋予不同权重,同时融入内容引导注意力混合方案(Content-guided Attention based Mixup Fusion Scheme,CGAFusion),通过学习空间权重来调整特征;解码部分由DehazeFormer和SKFF构成,采用逐点卷积,在保证网络性能同时,减少网络的参数量;跳跃连接引入小波变换,对不同尺度的特征图进行小波分析,获取不同尺度的高、低频特征,放大交通雾图的细节使得复原图像保留纹理;最后,将原始图像和经解码后输出的特征图融合,获取更多的细节信息.实验结果表明,本文方法相比于基线DehazeFormer网络,其PSNR指标在公开数据集中提升1.32以上,在合成数据集中提升0.56,SSIM指标提升了0.015以上,MSE值有较大幅度降低,下降了23.15以上;Entropy指标提升0.06以上.本文去雾算法对提升交通雾图像的对比度、降低雾图模糊和失真及细节丢失等方面均表现出优良的性能,有助于后续道路交通的智能视觉监控与管理.

    交通图像去雾小波变换选择性核特征融合内容引导注意力DehazeFormer

    融合特征重组和注意力的小样本战斗部破片群目标检测

    和萌武江鹏梁超胡鹏宇...
    1929-1940页
    查看更多>>摘要:战斗部破片群运动参数对弹药毁伤威力评估具有重要的意义.针对破片尺寸较小、背景信息复杂以及破片数据样本少导致的破片检测精度较低的问题,本文提出一种YOLOv5-FD的战斗部破片群目标检测方法.首先,在网络输出端增加微小目标检测层,将原始的三尺度改为四尺度,并在特征融合网络中引入内容感知特征重组(Content Aware ReAs-sembly of Features,CARAFE)上采样模块替换原有的最近邻插值上采样,减少小目标特征信息损失,提高弱小破片的提取能力.其次,在特征提取网络引入坐标注意力模块(Coordinate Attention,CA),加强对破片特征的提取,弱化背景信息,抑制复杂背景的干扰.最后,在模型训练过程中引入模型不可知元学习方法(Model Agnostic Meta Learning,MAML),达到仅用小样本破片数据集实现较高的检测性能.实验结果表明,YOLOv5-FD破片检测算法在自制破片数据集中,精确率达到了90.5%,召回率达到了85.4%,平均精度mAP_0.5达到了88.2%,与原始YOLOv5s算法相比分别提高了7.1%,7.9%和7.5%,有效提高了破片目标检测准确性.

    高速破片目标检测YOLOv5特征重组注意力机制元学习

    顾及最优分配和最佳掩码的点云部件分割

    陈西江孙曦赵不钒安庆...
    1941-1953页
    查看更多>>摘要:为了增强网络的泛化能力,提升部件分割的精度,本文提出了一种顾及最优分配和最佳掩码的点云部件分割方法.首先,根据推土机距离定义两个点云之间的最优分配;然后利用最远点采样对点云分组,计算每个分组中点的显著性,再利用球查询确定点云的最佳掩码,以保留原始点云的语义信息;最后,将一点云中显著性高的点的邻域替换掉另一点云中显著性低的点的邻域,从而实现点云之间的混合增强.本文在ShapeNet数据集上进行验证,使用本方法进行增强数据再输送到PointNet,PointNet++以及DGCNN模型中,其mIoU从83.7%,85.1%,85.1%分别增加到了85.1%,86.3%以及86.0%,有效提升了部件分割的效果.

    数据增强点云部件分割显著性

    联合图像通道与像素双注意力机制精细化单幅图像去雪

    石明珠糟斌苏宇皓林芯卉...
    1954-1964页
    查看更多>>摘要:针对雪天退化图像中不规则和多变的雪花形态,提出一种双注意力机制的精细化图像去雪网络(Dual Attention Refinement Desnowing Network,DARDNet).网络引入维度拆分处理策略,并行处理通道和像素双维度特征,旨在有效配置两种注意力机制,兼顾提取复杂特征和保护纹理细节.其中,通道注意力机制针对雪花形态构建基础模块,形成U型金字塔结构分层提取深层次特征;像素注意力机制结合卷积形成自校准模块,串联高效Transformer关注图像纹理细节;两种注意力机制并行化处理后进行特征融合,提升信息融合度.在CSD,SRRS和Snow100K三个数据集上进行验证测试,其中在CSD数据集上PSNR达到32.16 dB,SSIM达到0.96.本文方法在处理多种雪花形态方面具有一定优势,能很好地重建纹理细节,获得高质量的去雪图像.

    单幅图像去雪通道注意力机制像素注意力机制深度图像先验