首页期刊导航|计算机工程与科学
期刊信息/Journal information
计算机工程与科学
国防科学技术大学计算机学院
计算机工程与科学

国防科学技术大学计算机学院

王志英

月刊

1007-130X

jsjgcykx@163.net

0731-84576405

410073

湖南省长沙市开福区德雅路109号国防科技大学计算机学院

计算机工程与科学/Journal Computer Engineering and ScienceCSCD北大核心CSTPCD
查看更多>>本刊系国防科技大学计算机学院主办的计算机类综合性学术刊物,属中国计算机学会会刊,已先后被列为中文核心期刊、中国科技核心期刊、中国学术期刊(光盘版)全文入编期刊、中国科学引文数据库来源期刊(CSCD核心)、中国学术期刊综合评价数据库来源期刊。
正式出版
收录年代

    融合特征权重与改进粒子群优化的特征选择算法

    刘振超苑迎春王克俭何晨...
    282-291页
    查看更多>>摘要:随着教育信息化的发展,教育数据呈现特征数量高、冗余度高等特点,这使目前的分类算法在教育数据上分类准确率不理想。提出一种将特征权重算法与改进粒子群优化算法融合的混合式特征选择算法(RF-ATPSO)。该算法首先使用RELIEF-F算法计算各个特征的权重,筛除冗余特征,然后在筛选后的特征集合中利用改进粒子群算法搜索最优特征子集。实验结果表明,在6个UCI公共数据集上,经RF-ATPSO算法进行特征选择后,平均准确率提升了10。04%,且平均特征子集规模最小、收敛速度最快;在学生学业成绩画像特征数据集上,该算法以较小的特征子集规模达到较高的分类准确率,平均准确率为94。77%,明显优于其它特征选择算法,实验充分证明了该算法具有实际应用意义。

    特征选择特征权重改进粒子群优化T-分布

    基于模型的非凸聚类算法

    钟卓辉陈黎飞
    292-302页
    查看更多>>摘要:由于数据可能分布在非规则的流形上,其中潜在的簇往往呈现非凸的形状和结构,针对这类数据的聚类问题被统称为非凸聚类。现有的主流非凸聚类方法包括基于原始空间的方法和基于空间变换的方法,均忽略了非凸数据模式的显式描述。提出一种描述性模型用于非凸聚类。首先,基于核密度方法定义了一种具有混合形式的特征加权核密度模型,其无需事先假定任何概率分布模型且不限制簇的形状,这是传统基于模型的聚类方法无法实现的。其次,基于提出的模型推导了聚类目标函数,并基于期望最大化算法提出一种求解密度函数局部区域密度极大值的优化算法,那些上升到密度函数相同密度极大值的样本点被划分为同一个簇。最后,定义了一种基于模型的非凸聚类算法。算法不需人为定义簇的数量,并且能够为每个簇分配一个显式的概率密度函数,有助于更稳健和更准确地表征集群。除此之外,算法不仅在优化过程中进行自适应带宽选择,而且在优化过程中赋予了样本空间特征权重,实现了嵌入式特征选择。

    非凸聚类描述性模型基于模型的聚类特征选择核密度估计局部密度极大值

    一种混合多策略改进的麻雀搜索算法

    李江华王鹏晖李伟
    303-315页
    查看更多>>摘要:针对麻雀搜索算法SSA求解目标函数最优解时具有过早收敛、在多峰条件下易陷入局部最优和在高维情况下求解精度不足等问题,提出了一种混合多策略改进的麻雀搜索算法MISSA。考虑到算法初始解的质量很大程度上会影响整个算法的收敛速度与精度,引入精英反向学习策略,扩大算法的搜索区域,提升初始种群的质量和多样性;对步长进行分阶段控制,以提高算法的求解精度;通过在跟随者的位置中加入Circle映射参数与余弦因子,提高算法的遍历性与搜索能力;采用自适应选择机制在麻雀个体位置更新中加入Lévy飞行,增强算法寻优和跳出局部最优的能力。将改进后的算法与麻雀搜索算法及其他算法在13个测试函数上进行对比,并进行Friedman检验。实验结果表明,改进后的麻雀搜索算法能够有效提高寻优精度与收敛速度,并在高维问题中也具备较高的稳定性。

    麻雀搜索算法反向学习步长控制混沌参数自适应

    基于类型注意力和GCN的远程监督关系抽取

    张欢李卫疆
    316-324页
    查看更多>>摘要:远程监督关系抽取通过自动对齐自然语言文本与知识库生成带有标签的训练数据集,解决样本人工标注的问题。目前的远程监督研究大多没有关注到长尾(long-tail)数据,因此远程监督得到的大多数句包中所含句子太少,不能真实全面地反映数据的情况。因此,提出基于位置-类型注意力机制和图卷积网络的远程监督关系抽取模型PG+PTATT。利用图卷积网络GCN聚合相似句包的隐含高阶特征,并对句包进行优化以此得到句包更丰富全面的特征信息;同时构建位置-类型注意力机制PTATT,以解决远程监督关系抽取中错误标签的问题。PTATT利用实体词与非实体词的位置关系以及类型关系进行建模,减少噪声词带来的影响。提出的模型在New York Times数据集上进行实验验证,实验结果表明提出的模型能够有效解决远程监督关系抽取中存在的问题;同时,能够有效提升关系抽取的正确率。

    远程监督关系抽取图卷积网络注意力机制类型关系句包

    中文电子病历信息提取方法研究综述

    吉旭瑞魏德健张俊忠张帅...
    325-337页
    查看更多>>摘要:电子病历里承载的大量医疗信息能够帮助医生更好地了解患者的情况,辅助医生进行临床诊断。作为中文电子病历信息提取的2大核心任务,命名实体识别和实体关系抽取的目标是识别出电子病历文本中的医学实体并提取出各个实体间的医学关系。首先,系统阐述了中文电子病历的研究现状,指出命名实体识别和实体关系抽取2大任务在中文电子病历信息提取中所发挥的重要作用。随后,介绍了面向中文电子病历信息提取的命名实体识别和关系抽取算法的最新研究成果,并分析了每个阶段各个模型的优缺点。最后,讨论了中文电子病历现阶段所存在的问题并对未来的研究趋势进行展望。

    中文电子病历命名实体识别实体关系抽取自然语言处理深度学习

    基于元学习个性化推荐研究综述

    吴国栋刘旭旭毕海娇范维成...
    338-352页
    查看更多>>摘要:推荐系统作为缓解"信息过载"的工具,为用户过滤冗余信息并提供个性化服务,近年来得到了广泛应用。然而,实际推荐场景中,通常存在冷启动与不同推荐算法难以根据实际环境自适应选择等问题。元学习因其具有基于少量训练样本快速学会新知识和技能的优点,被越来越多地应用于推荐系统相关研究中。对现有基于元学习技术缓解推荐系统冷启动问题以及自适应推荐问题的主要研究进行探讨。首先,分析了基于元学习推荐在上述2个方面已取得的相关研究进展;然后,指出了现有元学习推荐研究存在难以适应复杂任务分布、计算代价高和容易陷入局部最优等问题;最后,对元学习在推荐系统领域的一些最新研究方向进行了展望。

    元学习个性化推荐冷启动自适应算法选择

    《计算机工程与科学》征文通知

    352页

    基于早期时间序列分类的可解释实时机动识别算法

    庞诺言关东海袁伟伟
    353-362页
    查看更多>>摘要:战斗机机动识别是判断战斗机战术意图的基础,然而现有的机动识别方法实时性不强且不具有可解释性,无法满足空战中对实时性的要求且不利于人机互信。设计基于早期时间序列分类的实时机动识别算法,将完整机动切分为机动单元,使用集成学习算法对机动单元进行识别并实时监控,以满足实时性要求并获得高识别精度。算法使用可解释模型,通过特征贡献度进行模型解释,使模型更透明从而降低空战决策者的决策风险。选择盘旋、斤斗等9种不同机动动作进行仿真实验,结果表明:在完整机动动作执行到20%时,所提算法即可识别其机动类别,识别准确率可达93%。

    早期时间序列分类机动识别可解释集成学习

    基于精英引导的改进哈里斯鹰优化算法

    李雨恒高尚孟祥宇
    363-373页
    查看更多>>摘要:针对哈里斯鹰优化算法(HHO)易陷入局部最优和收敛速度慢的问题,提出一种基于精英引导的改进哈里斯鹰优化算法(EHHO)。首先,引入精英反向学习,以精英中心为对称中心进行反向学习来优化种群结构,增强算法跳出局部最优的能力;其次,引入精英演化策略,以精英个体为主体进行基于高斯随机突变的演化来提升种群质量,加快算法收敛速度;最后,引入自适应机制,动态调整精英演化策略中2种演化方式的选择概率,以提升算法稳定性。为验证改进算法的有效性,选取15个基准函数进行仿真实验。实验结果表明,改进算法在寻优性能和鲁棒性上均有明显提升,在优化算法中具有一定竞争力。

    哈里斯鹰优化算法精英反向学习精英演化策略高斯随机突变自适应机制

    一阶逻辑中基于treelet图神经网络的前提选择

    马雪何星星兰咏琪李莹芳...
    374-380页
    查看更多>>摘要:前提选择是解决自动定理证明器面对大规模问题时性能降低的有效方法。当前面向一阶逻辑中前提选择的主流图神经网络忽略了逻辑公式图内部的节点顺序信息。针对此问题,将一种面向高阶逻辑公式的保序方法拓展到一阶逻辑中,并提出了一种基于treelet的图神经网络模型。该模型在信息聚合时一部分聚合中心节点的父、子节点信息,另一部分聚合节点顺序信息。实验分析表明:基于treelet的图神经网络模型在前提选择任务中比最优的主流图神经网络模型的分类准确率提高了约2%。

    一阶逻辑公式图神经网络前提选择二元分类