首页期刊导航|计算机科学
期刊信息/Journal information
计算机科学
计算机科学

朱完元

月刊

1002-137X

jsjkx12@163.com

023-63500828

401121

重庆市渝北区洪湖西路18号

计算机科学/Journal Computer ScienceCSCD北大核心CSTPCD
查看更多>>本刊的读者对象是:大专院校师生,从事计算机科学与技术领域的科研、生产人员。办刊宗旨是:坚持“双百”方针,活跃计算机科学与技术领域的学术气氛,重点报导国内外计算机科学与技术的发展动态,为我国的计算机科学与技术立于世界之林、达到国际先进水平奋斗而矢志不渝。
正式出版
收录年代

    基于时频融合特征的肺动脉高压心音分类模型

    王彦麟孙静杨宏波郭涛...
    375-381页
    查看更多>>摘要:先心病相关肺动脉高压是一种严重的心血管疾病,致死率高,对其进行早期筛查与识别对于治愈尤为重要.目前临床是通过右心导管术确诊,此为有创检查,不便于在大规模筛查中采用,研究一种无创便捷的识别方法迫在眉睫.文中建立了一种时频融合的心音分类模型.首先对心音信号进行预处理,然后使用融合滤波器组对信号进行转换并求取动态时频特征,最后将得到的融合特征参数输入表格式先验数据拟合网络(TabPFN)中进行分类识别.实验结果表明,该算法在正常、CHD-PAH和CHD中的平均准确率、精确率、灵敏度、特异度和F1分别为92.21%,92.15%,92.15%,96.11%,92.14%.对于先心病相关肺动脉高压的早期筛查与识别具有重要意义.

    心音先心病相关肺动脉高压动态特征提取时频特征融合表格式先验数据拟合网络

    基于自适应直方图均衡化的医学图像可逆对比度增强算法

    谭碰欧博
    382-388页
    查看更多>>摘要:目前,一些可逆数据隐藏算法通常是对图像进行类似直方图均衡化的信息嵌入操作来实现对比度增强.这类方法虽然简单有效,但是缺乏明确的目标函数来指引参数选择,难以优化对比度增强效果,因而容易产生增强不足或过度增强等问题.为了优化可逆信息嵌入后的对比度增强效果,提出了一种基于自适应直方图均衡化并结合对比度增强的医学图像可逆数据隐藏算法.该方法基于预测误差扩展技术来实现可逆数据嵌入,并通过所定义的自适应直方图均衡化目标函数来优化预测残差直方图的修改,确定最优的数据嵌入点,在确保对比度增强的前提下实现低失真的可逆嵌入.实验结果表明,相比同类算法,所提方法在实现可逆嵌入的同时,能够进一步增强图像对比度,辅助提升医学图像中的目标识别效率.

    医学图像处理可逆对比度增强自适应直方图均衡化预测误差扩展

    基于DIoU损失与平滑约束的结构化SVM目标跟踪方法

    孙子文袁广林李从利秦晓燕...
    389-396页
    查看更多>>摘要:基于结构化SVM的目标跟踪因其优良的性能而受到了广泛的关注,但是现有方法存在损失函数不精确和模型漂移问题.针对这两个问题,首先提出基于DIoU损失与平滑约束的结构化SVM模型.该模型采用DIoU函数作为损失函数,利用t时刻超平面法向量wt与t-1时刻超平面法向量wt-1差值的L2范数作为平滑约束.其次基于对偶坐标下降原理设计了该模型的求解算法.最后利用提出的基于DIoU损失与平滑约束的结构化SVM实现了一种多尺度目标跟踪方法.对所提出的目标跟踪方法在OTB100和VOT-ST2021数据集上进行了实验验证,实验结果表明:所提出的Scale-DCSSVM在OTB数据集上的跟踪成功率比DeepSRDCF高1.1个百分点,在VOT-ST2021上的EAO比E.T.Track高1.2个百分点.所提方法具有较优的性能.

    目标跟踪结构化SVMDIoU损失平滑约束

    结合多尺度卷积块与密集卷积块的遥感图像融合

    侯林昊刘帆
    397-402页
    查看更多>>摘要:遥感图像融合的目的在于获得与多光谱图像相同光谱分辨率和与全色图像相同空间分辨率的高分辨率多光谱图像.尽管深度学习在遥感图像融合方面取得了显著的成果,但由于深度模型网络的限制,网络无法充分提取图像中丰富的空间信息,导致融合图像空间信息缺失,融合结果质量低.因此引入了多尺度块,不同尺度的图像特征可以通过不同大小的卷积核学习,从而增加提取特征的丰富性.随后引入了密集卷积块,通过密集连接来达到特征重用的目的,在网络较深时减少了浅层特征信息的丢失.在特征融合阶段,所提方法将网络不同层次的特征图作为特征融合层的输入,提高融合图像的质量.在GE1数据集以及QB数据集上与6种融合算法进行对比实验,实验结果表明所提方法的融合图像更好地保留了空间信息与光谱信息,在主观和客观评价上均优于对比方法.

    遥感图像融合深度学习多光谱图像多尺度卷积块密集连接

    基于跟踪检测时序特征融合的视频遮挡目标分割方法

    郑申海高茜刘鹏威李伟生...
    403-408页
    查看更多>>摘要:视频实例分割是近年来兴起的一项在图像实例分割基础上引入时序特性的视觉任务,旨在同时对每一帧的目标进行分割并实现帧间的目标跟踪.移动互联网和人工智能的迅猛发展产生了大量的视频数据,但由于拍摄角度、快速运动和部分遮挡等,视频中的物体往往会出现分裂或模糊的情况,使得从视频数据中准确地分割目标并对目标进行处理和分析面临着重大挑战.经查阅和实践发现,现有的视频实例分割方法在遮挡情况下的表现较差.针对上述问题,提出了一种改进的遮挡视频实例分割算法——通过融合Transformer和跟踪检测的时序特征来改善分割性能.为增强网络对空间位置信息的学习能力,该算法将时间维度引入Transformer网络中,并考虑到视频中目标检测、跟踪和分割之间的相互依赖和促进关系,提出了一种能够有效地聚合目标在视频中的跟踪偏移的融合跟踪模块和检测时序特征模块,提升了遮挡环境下的目标分割性能.通过在OVIS和YouTube-VIS数据集上进行的实验,验证了所提方法的有效性.相比当前的基准方法,该方法展现出了更好的分割精度,进一步证明了其优越性.

    视频实例分割目标检测目标跟踪时序特征遮挡目标

    多重注意力引导的超声乳腺癌肿瘤图像分割

    郭洪洋程前康晓东杨靖怡...
    409-414页
    查看更多>>摘要:传统基于U-Net超声乳腺图像分割任务中存在预测尺度单一和信息丢失等问题.针对存在的问题,提出一种由多重注意力引导机制的U-Net超声乳腺肿瘤图像分割.首先,在U-Net的编码结构中,引入多个SE通道注意力,对输入的乳腺肿瘤图像进行多层级的语义信息提取,引导编码器聚焦乳腺肿瘤特征,减少冗余背景信息带来的干扰;其次,通过设计特征融合处理模块,对编码器传来的特征图进行复杂语义特征的融合处理;最后,在解码器部分,加入金字塔结构捕获全局空间信息,提高模型对肿瘤图像的多尺度特征提取能力,以提高整体网络的表达能力和分割性能.在乳腺肿瘤图像数据集上对该方法进行了仿真实验,结果表明,与其他U-Net改进策略相比,该方法具有更强的准确率和鲁棒性.

    多重注意力引导乳腺U-Net超声图像分割

    基于检测框下边沿的单目视觉车辆测距研究

    刘宏利王雨林邵磊李季...
    415-420页
    查看更多>>摘要:对车辆测距是当今驾驶领域的热门研究方向.针对传统测距方法测距精度受到车型大小影响的问题以及前车存在的X轴偏移问题,提出了基于检测框下边沿中心点的车辆测距模型.该模型通过使用单目视觉摄像头及车辆检测算法获取前方车辆的位置信息,并通过车辆检测框得出的下边沿中心点坐标,以及相机安装的俯仰角信息综合建立了车辆测距模型,解决了车型大小带来的误差问题;通过构建三角函数模型,解决了前车相对于实验车辆存在的X轴分量问题,并优化改进了前车安全距离的判定方式;设定车尾矩形框中心点横坐标与车辆外接矩形框宽度的比值λ,根据λ取值分情况讨论,使该模型更符合场景应用需要.并提出了基于测距关键点的逆透视变换模型,减小了测距误差.实验表明,改进后测距模型的测距精度不受车型大小的影响且能考虑到前车位置的X轴分量问题,改进后的测距模型相对于传统测距模型,测距误差降低了约1.5%,且测距精度明显提高.

    单目视觉测距逆透视变换检测框下边沿中心点目标检测

    基于高斯增强模块的相机模型辨别

    黄远航边山王春桃
    421-425页
    查看更多>>摘要:在多媒体取证中,高通滤波器是卷积神经网络常用的预处理层之一,用于抑制图像内容的影响,只强调高频特征.但与此同时,其他一些包含取证痕迹的有用信息也将被不加区别地剔除.为了解决这一问题,文中提出了一个简单而高效的高斯增强模块(Gaussian Enhancement Module,GEM)来提取"扩展的"高频特征,即在维持原有特征强度的基础上增强高频细节信息.GEM由两个连续的一维低通高斯滤波器组成,以获得一个模糊版本的特征图,并进一步得到相应的扩展高频残差.通过以高频残差作为空间掩膜,它可以自适应地强化脆弱和细微的低级取证特征,并防止在特征传递过程中出现衰减现象.在相机模型辨别数据集上进行实验,通过将该模块插入多个主流骨干网络,GEM仅仅带来非常轻微的模型复杂度的增加,网络性能和鲁棒性却显著提高,表明该模块支持"即插即用",与特定的网络架构无关.

    相机模型辨别深度学习图像取证高通滤波器高斯增强

    基于SPD-Conv结构和NAM注意力机制的鱼群小目标检测

    谌雨章王诗琦周雯周婉婷...
    426-432页
    查看更多>>摘要:为解决因水下成像环境退化导致图像分辨率较低,以及因鱼群目标较小等因素导致的检测精度不高的问题,提出了一种结合SPD-Conv结构和NAM注意力机制的改进YOLOv7检测算法.首先,采用Space-to-Depth(SPD)结构改进头部网络,取代了网络中原有的跨步卷积结构,保留了更多的细粒度信息,提升了特征学习的效率,提高了网络对低分辨率图像的检测效果.然后在网络中引入Normalization-based Attention Module(NAM)注意力机制,采用CBAM的模块集成方式,使用BN缩放因子来计算注意力权重,抑制了不显著的特征,提升了小目标检测的准确率.最后针对水下成像退化,对检测图片做反卷积预处理,减小了水下成像退化因素对检测造成的影响.实验结果显示,在 WildFish数据集上模型的整体精度达到97.2%,与YOLOv7算法相比提升了7.6%,准确率提升了8.5%,召回率提升了9.8%,与Efficientdet,SSD,YOLOv5及YOLOv8算法相比,所提模型精度分别提升了12.6%,17.8%,4%及2.9%,在Aquarium数据集上模型的整体精度达到80.5%,相比Efficient-det,SSD,YOLOv5,YOLOv7及YOLOv8分别提升了18.4%,11.6%,6.9%,2.0%及2.7%,可以满足水下鱼群识别的需求.

    SPD-Conv结构NAM注意力机制YOLOv7算法鱼群检测目标检测

    基于YOLOP-L的多特征融合道路全景驾驶检测

    吕嘉璐周力巨永锋
    433-440页
    查看更多>>摘要:目前,驾驶员视角下的交通图像检测技术成为交通领域的重要研究方向,同时提取车辆、道路、交通标志等多种特征已经成为驾驶员理解道路信息多样性的亟需任务.以往研究已在单类目标检测的特征提取方面取得了长足进步,然而,这些研究不能很好地联合应用于其他区别较大的特征检测任务中,且融合训练过程中会损失个别特征检测的精度.针对驾驶员视野范围内道路信息多样且复杂的特点,本文提出了一种基于多特征融合训练的检测模型YOLOP-L,它能够同时对多种不同特征交通目标进行融合训练,同时保证单项检测任务的精度.首先,为了解决特征融合中语义信息表达不完整的问题,设计的SP-LNet模块通过FPN与双向特征网络结合实现网络更深层次的融合,使得提取的信息更完整,从而提升道路小目标的检测性能;其次,设计新的分割头深度可分离卷积,将语义信息与局部特征融合促使多特征融合的训练准确度与速度得到进一步提升;再次,体系中设计的GDL-Focal多类混合损失函数更专注于困难样本,可用于解决样本特征不平衡的问题.最后,对比实验表明:YOLOP-L相比原YOLOP网络运行的速度更快;在车辆目标检测任务下召回率提升了2.2%;在车道线检测任务下准确率提升2.8%,车道线IoU的值较HybridNets网络下降2.45%,但较YOLOP-L网络提升1.95%;在可行驶区域分割任务下其整体检测性能提升1.1%.结果表明,在具有挑战性的BDD100K数据集上,YOLOP-L可以在复杂场景下有效解决检测精度不足和分割缺失的问题,提高了车辆识别、车道线检测以及道路行驶区域联合训练的准确性和鲁棒性.

    全景驾驶多特征融合车辆检测可行驶区域检测车道线检测双向特征金字塔