首页期刊导航|计算机应用研究
期刊信息/Journal information
计算机应用研究
四川省电子计算机应用研究中心
计算机应用研究

四川省电子计算机应用研究中心

刘营

月刊

1001-3695

arocmag@163.com

028-85249567

610041

成都市成科西路3号

计算机应用研究/Journal Application Research of ComputersCSCD北大核心CSTPCD
查看更多>>本刊创刊于1981年,以其新颖性、技术性、实用性、工具性、知识性于一身,设置众多栏目,信息量极大,反映并涵盖了当今国内外计算机应用研究的主流技术、热点技术及最新发展趋势,是一份极具收藏价值的技术刊物。本刊读者对象为从事计算机应用、开发、研究的科技人员,大中专院校师生,各企事业单位技术人员,计算机业余爱好者及相关管理、情报工作者订阅、收藏。本刊现为中国计算机学会会刊,中国科技论文统计源核心期刊,全国中文核心期刊,中国科学引文数据库来源期刊, 中国学术期刊综合评价数据库来源期刊,并为多个检索数据库收录,在国内科技期刊评比中多次荣获优秀科技期刊奖。
正式出版
收录年代

    基于物联网集成防御机制的诱饵路径优化算法

    张琳李焕洲张健唐彰国...
    3433-3438页
    查看更多>>摘要:针对物联网设备很容易被攻击者利用来入侵网络的问题,设计实现了一种将基于网络拓扑改组的移动目标防御(network topology shuffling-based moving target defense,NTS-MTD)和网络欺骗相结合的物联网集成防御机制,并基于该防御机制设计了一种诱饵路径优化算法(decoy path-based optimization algorithm,DPOA)来进行网络拓扑改组优化.在软件定义网络(software defined network,SDN)的支持下主动改变真实节点和诱饵节点的网络拓扑,实现物联网环境中的网络拓扑改组.通过一个带有安全度量的图形安全模型(graphical security model,GSM)研究防御机制有效性,并使用三个指标对DPOA的安全性和性能进行衡量.仿真结果表明,基于DPOA的方案防御成本显著降低且安全性高,更适应于物联网.

    移动目标防御网络欺骗物联网图形安全模型

    基于图卷积网络的多标签遥感图像分类

    杨敏航陈龙刘慧钱育蓉...
    3439-3445页
    查看更多>>摘要:由于遥感图像包含物体类别多样,单个语义类别标签无法全面地描述图像内容,而多标签图像分类任务更加具有挑战性.通过探索深度图卷积网络(GCN),解决了多标签遥感图像分类缺乏对标签语义信息相关性利用的问题,提出了一种新的基于图卷积的多标签遥感图像分类网络,它包含图像特征学习模块、基于图卷积网络的分类器学习模块和图像特征差异化模块三个部分.在公开多标签遥感数据集Planet和UCM上与相关模型进行对比,在多标签遥感图像分类任务上可以得到了较好的分类结果.该方法使用图卷积等模块将多标签图像分类方法应用到遥感领域,提高了模型分类能力,缩短了模型训练时间.

    卷积神经网络图卷积网络多标签遥感图像分类

    基于深度信息的特征学习与动作识别方法

    宋轶航胡静徐超孟昭鹏...
    3446-3450页
    查看更多>>摘要:为了进行复杂交互动作识别,提出基于深度信息的特征学习方法,并使用两层分类策略解决相似动作识别问题.该方法从频域的角度分析深度图像动作序列,提取频域特征,利用VAE对特征进行空间特征压缩表示,建立HMM模拟时序变化并进行第一层动作识别.为了解决相似动作识别问题,引入三维关节点特征进行第二层动作识别.实验结果表明,两种特征在动作数据集SBU-Kinect上能够有效地表示姿态含义,策略简单有效,识别准确率较高.

    交互动作识别深度信息隐马尔可夫模型变分自编码器关节点特征

    基于等级划分的复杂点云骨架提取算法

    吴寒刘骥
    3451-3455页
    查看更多>>摘要:对于复杂点云的骨架提取,由于原始点云的遮挡、缺失、分布不均、分支复杂等原因,所提取骨架会产生断裂、拓扑结构错误等问题.针对复杂结构点云的骨架提取,提出了一种基于等级划分的复杂点云骨架提取算法(multilevel divided skeleton extraction,MDSE).使用L1-medial提取初始骨架点,将初始骨架点连接成单分支骨架线,通过对单分支结构的初始骨架线进行等级划分,利用连通分支的平均分叉角确定骨架线断裂位置,由底至项修补断裂骨架线;最后采用Cardinal样条曲线改善骨架形态,形成完整且符合原始点云拓扑结构的骨架线.实验结果表明,该算法能够从复杂点云中提取出较为完整、拓扑结构正确的骨架线.

    复杂点云骨架线提取等级划分平均分叉角Cardinal样条曲线

    基于改进Mask R-CNN的在架图书书脊图像实例分割方法

    曾文雯杨阳钟小品
    3456-3459,3505页
    查看更多>>摘要:运用人工智能技术将是构建下一代智慧图书馆的关键,为了实现图书的定位和识别,提出一种基于改进Mask R-CNN的在架图书书脊图像实例分割方法.考虑到图书密集排列、具有一定的旋转性、副本纹理极相似等难点,改进锚框为旋转矩形框,提出旋转区域建议网络取代区域建议网络;提出旋转特征提取方法可减少池化误差且有效提取目标特征,结合掩膜的旋转对齐以提升预测掩膜的准确性.建立了一个包含1849张在架图书书脊图像的标注数据集,提出方法的测试结果大幅度优于其他重要的实例分割算法,证实了在网络中使用旋转特征对于具有一定朝向的、密集的目标分割难题很有效.

    智慧图书馆图像分割MaskR-CNN旋转特征提取

    基于Siam-UNet++的高分辨率遥感影像建筑物变化检测

    朱节中陈永柯福阳张果荣...
    3460-3465页
    查看更多>>摘要:针对同—区域前后时序的高分辨率遥感影像背景复杂、变化类别多样、目标变化检测时存在漏检和边界识别粗糙问题,提出了一种基于Siam-UNet++深度神经网络的高分辨率遥感影像建筑物变化检测算法.该算法采用UNet++作为骨干提取网络,在其编码器部分应用Siam-diff(Siamese-difference)结构提取前后两时序图像的变化特征,并在解码阶段的上采样和横向跳跃路径连接之后引入注意力机制,突出建筑物变化的特征,抑制网络对其他类别特征的学习;同时使用多边输出融合(multiple side-output fusion,MSOF)策略加权融合不同语义层次的特征信息,提高了建筑物变化检测的精度;最后采取滑窗的方法对大尺度遥感影像进行预测,减少拼接过程中变化结果图产生的空洞图斑.在大型建筑物变化检测数据集上的实验结果表明,该算法有效提升了建筑物的变化检测效果.

    深度学习Siam-UNet++变化检测注意力机制多边输出融合

    基于pro-YOLOv4的多尺度航拍图像目标检测算法

    赵玉卿贾金露公维军钱育蓉...
    3466-3471页
    查看更多>>摘要:航拍图像目标检测存在多尺度目标检测精度低、检测速度慢、漏检和误检严重等问题.针对这些问题,提出一种融合卷积注意力机制和轻量化网络的目标检测算法(pro-YOLOv4),并应用于多尺度航拍图像目标检测.首先,利用K-means聚类算法对航拍数据集进行聚类分析并优化锚框参数,以提高对目标检测的有效性;其次,采用轻量级网络结构,精简网络复杂度,提高检测速度;最后,引入卷积注意力模块来解决复杂场景对于航拍目标检测的干扰,从而有效降低误检率和漏检率.在航拍数据集RSOD和NWPU VHR-10上进行实验对比,实验结果表明,pro-YOLOv4检测效果较YOLOv4有明显提升,平均检测精度分别提高了3.42%和3.98%.该算法不仅对多尺度目标均表现出较好检测性能,还降低了目标漏检率,并具有较好的鲁棒性和泛化能力.

    计算机视觉目标检测YOLOv4注意力机制

    基于双模式联合三边滤波器的深度图像超分辨率方法

    杨树媛曹宁郭斌颜安...
    3472-3477页
    查看更多>>摘要:彩色图像引导的深度图像超分辨率方法通过利用高分辨率彩色图像的高频信息来重建深度图像,取得了不错的重建效果,但当深度图像和彩色图像边缘不(完全)一致或彩色区域纹理丰富时,重建图像普遍存在边缘模糊和纹理拷贝问题.针对这一问题,提出一种边缘图像引导的双模式联合三边滤波器(DMJTF)方法.该方法利用单幅低分辨率深度图像构建了一个边缘图像金字塔字典,然后利用MRF模型构建了一个高分辨率边缘图像,该图像确定了滤波器的两种模式,分别用于重构深度图像的边缘和平滑区域.实验结果表明DMJTF算法有效地避免了纹理拷贝异常,降低了边缘模糊现象,在定性和定量两个方面都优于其他算法,取得了较好的超分效果.

    深度图像超分辨率边缘引导双模式联合三边滤波器

    基于双分支融合的反馈迭代金字塔去模糊和超分辨率算法

    王峰蔡立志张娟
    3478-3483页
    查看更多>>摘要:针对低分辨率模糊图像实施超分辨率重建后出现大量伪影和边缘纹理不清晰问题,提出了一种双分支融合的反馈迭代金字塔算法.首先采用不同的分支模块分别提取低分辨率模糊图像中潜在的去模糊特征和超分辨率特征信息;然后采用自适应融合机制将两种不同性质的特征进行信息匹配,使网络在去模糊和超分辨率重建模块中更加关注模糊区域;其次使用迭代金字塔重建模块将低分辨率模糊图像渐进重建为逼近真实分布的超分辨率清晰图像;最后重建图像通过分支反馈模块生成清晰低分辨率图像,构建反馈监督.在GOPRO数据集中与现有算法的对比实验结果表明,所提算法能够生成纹理细节更加清晰的超分辨率图像.

    去模糊超分辨率残差网络金字塔网络深度学习

    基于ECA-Net与多尺度结合的细粒度图像分类方法

    毛志荣都云程肖诗斌施水才...
    3484-3488页
    查看更多>>摘要:针对细粒度图像分类问题提出了一种有效的算法以实现端到端的细粒度图像分类.ECA-Net中ECA(efficient channel attention)模块是一种性能优势显著的通道注意力机制,将其与经典网络ResNet-50进行融合构成新的基础卷积神经网络ResEca;通过物体级图像定位模块与部件级图像生成模块生成物体级图像和部件级图像,并结合原始图像作为网络的输入,构建以ResEca为基础的三支路网络模型Tb-ResEca-Net(three branch of ResEca network).该算法在公有数据集CUB-200-2011、FGVC-aircraft和Stanford cars datasets上进行测试训练,分别取得了89.9%、95.1%和95.3%的准确率.实验结果表明,该算法相较于其他传统的细粒度分类算法具有较高的分类准确率以及较强的鲁棒性,是一种有效的细粒度图像分类方法.

    注意力机制深度学习细粒度图像分类多尺度