首页期刊导航|纳米技术与精密工程(英文)
期刊信息/Journal information
纳米技术与精密工程(英文)
纳米技术与精密工程(英文)

胡小唐

双月刊

1672-6030

namijishu@tju.edu.cn

022-27892181

300072

天津市南开区卫津路92号

纳米技术与精密工程(英文)/Journal Nanotechnology and Precision EngineeringCSCD北大核心CSTPCDEI
查看更多>>本刊是纳米技术与精密工程领域专业性学术期刊,主要刊登纳米技术、微机电系统、精密加工和精密测量方面用中、英文撰写的具有创造性的科学研究论文、研究报告以及重要学术问题讨论和综述等.办刊宗旨在于反映国内外该领域及相关领域的重要科学研究成果,促进学术交流和科学技术发展.读者对象为国内外理工科高等院校师生、科研人员和广大工程技术工作者.欢迎国内外作者踊跃投稿.本刊为美国《工程索引》EI和中国科技论文统计源(中国科技核心期刊)收录期刊。
正式出版
收录年代

    Controllable blood–brain barrier (BBB) regulation based on gigahertz acoustic streaming

    Hang QiShuaihua ZhangJiaxue LiangShan He...
    1-7页
    查看更多>>摘要:The blood–brain barrier (BBB) is a structural and functional barrier necessary for brain homeostasis, and it plays an important role in the realization of neural function and in protecting the brain from damage by circulating toxins and pathogens. However, the extremely dense BBB also severely limits the transport of molecules across it, which is a great hindrance to the diagnosis and treatment of central nervous system (CNS) diseases. This paper reports a new method for controllable opening of the BBB, based on the gigahertz acoustic streaming (AS) generated by a bulk acoustic wave resonant device. By adjusting the input power and working distance of the device, AS with tunable flow rate can be generated to disrupt tight junction proteins (TJs) between endothelial cells. The results obtained with this method show that the gigahertz AS promotes the penetration of dextran molecules with different molecular weights across the BBB. This work provides a new platform for studying the mechanical regulation of BBB by fluid shear forces and a new method for improving the efficiency of drug delivery.

    A new approach for accurate determination of particle sizes in microfluidic impedance cytometry

    N.PriyadarshiU.AbbasiV.KumaranP.Chowdhury...
    8-17页
    查看更多>>摘要:In microfluidic impedance cytometry, the change in impedance is recorded as an individual cell passes through a channel between electrodes deposited on its walls, and the particle size is inferred from the amplitude of the impedance signal using calibration. However, because the current density is nonuniform between electrodes of finite width, there could be an error in the particle size measurement because of uncertainty about the location of the particle in the channel cross section. Here, a correlation is developed relating the particle size to the signal amplitude and the velocity of the particle through the channel. The latter is inferred from the time interval between the two extrema in the impedance curve as the particle passes through a channel with cross-sectional dimensions of 50μm (width) × 30μm (height) with two pairs of parallel facing electrodes. The change in impedance is predicted using 3D COMSOL finite-element simulations, and a theoretical correlation that is independent of particle size is formulated to correct the particle diameter for variations in the cross-sectional location. With this correlation, the standard deviation in the experimental data is reduced by a factor of two to close to the standard deviation reported in the manufacturer specifications.

    Conductive polymer hydrogel-coated nanopipette sensor with tunable size

    Lin LiFeng ZhouQiannan Xue
    18-25页
    查看更多>>摘要:Nanopipette-based sensors are one of the most effective tools for detecting nanoparticles, bioparticles, and biomolecules. Quantitative analysis of nanoparticles with different shapes and electrical charges is achieved through measurement of the blockage currents that occur when particles pass through the nanopore. However, typical nanopipette sensors fabricated using a conventional needle-pulling method have a typical pore-diameter limitation of around 100 nm. Herein, we report a novel conductive hydrogel-composited nanopipette sensor with a tunable inner-pore diameter. This is made by electrodepositing poly(3,4-ethylenedioxythiophene) polystyrene sulfonate onto the surface of a nanopipette with a prefabricated sacrificial copper layer. Because of the presence of copper ions, the conductive polymer can stably adhere to the tip of the nanopipette to form a nanopore;when nanoparticles pass through the conductive nanopore, more distinct blocking events are observed. The size of the nanopore can be changed simply by adjusting the electrodeposition time. In this way, suitable nanopores can be obtained for highly sensitive screening of a series of particles with diameters of the order of tens of nanometers.

    Multi-temperature modeling of femtosecond laser pulse on metallic nanoparticles accounting for the temperature dependences of the parameters

    Victor K.Pustovalova
    26-45页
    查看更多>>摘要:This review considers the fundamental dynamical processes of metal nanoparticles during and after the impact of a femtosecond laser pulse on a nanoparticle, including the absorption of photons. Understanding the sequence of events after photon absorption and their timescales is important for many applications of nanoparticles. Various processes are discussed, starting with optical absorption by electrons, proceeding through the relaxation of the electrons due to electron–electron scattering and electron–phonon coupling, and ending with the dissipation of the nanoparticle energy into the environment. The goal is to consider the timescales, values, and temperature dependences of the electron heat capacity and the electron–phonon coupling parameter that describe these processes and how these dependences affect the electron energy relaxation. Two-and four-temperature models for describing electron–phonon relaxation are discussed. Significant emphasis is paid to the proposed analytical approach to modeling processes during the action of a femtosecond laser pulse on a metal nanoparticle. These consider the temperature dependences of the electron heat capacity and the electron–phonon coupling factor of the metal. The entire process is divided into four stages:(1) the heating of the electron system by a pulse, (2) electron thermalization, (3) electron–phonon energy exchange and the equalization of the temperature of the electrons with the lattice, and (4) cooling of the nanoparticle. There is an appropriate analytical description of each stage. The four-temperature model can estimate the parameters of the laser and nanoparticles needed for applications of femtosecond laser pulses and nanoparticles.

    Demands and technical developments of clinical flow cytometry with emphasis in quantitative, spectral, and imaging capabilities

    Ting ZhangMengge GaoXiao ChenChiyuan Gao...
    46-55页
    查看更多>>摘要:As the gold-standard method for single-cell analysis, flow cytometry enables high-throughput and multiple-parameter characterization of individual biological cells. This review highlights the demands for clinical flow cytometry in laboratory hematology (e.g., diagnoses of minimal residual disease and various types of leukemia), summarizes state-of-the-art clinical flow cytometers (e.g., FACSLyricTM by Becton Dickinson, DxFLEX by Beckman Coulter), then considers innovative technical improvements in flow cytometry (including quantitative, spec-tral, and imaging approaches) to address the limitations of clinical flow cytometry in hematology diagnosis. Finally, driven by these clinical demands, future developments in clinical flow cytometry are suggested.