首页期刊导航|纳米研究(英文版)
期刊信息/Journal information
纳米研究(英文版)
纳米研究(英文版)

月刊

纳米研究(英文版)/Journal Nano ResearchCSCDCSTPCD北大核心EISCI
正式出版
收录年代

    Plasma-etching on monolithic MOFs-based MIM filter boosted chemical sensing

    Jianxi LiuLi FengZhihuan LiYang Wu...
    2800-2807页
    查看更多>>摘要:Metal-insulator-metal(MIM)cavity as a lithography-free structure to control light transmission and reflection has great potential in the field of optical sensing.However,the dense top metal layer of the MIM prohibits any external medium from entering the dielectric insulation layer,which limits the application of the cavity in the sensing field.Herein,we demonstrate a series of monolithic metal-organic frameworks(MOFs)based MIM cavities,which are treated by plasma etching to provide channels for chemical diffusion and to advance sensing.We modulate the bandwidth of the MIM filters by controlling the MOF thickness as insulator layers.Oxygen plasma-etching is applied to build channels on the top metal layer without altering their saturation and brightness for chemical sensing performance.The etching time regulates the number and size of channels on the top metal layer.Sensing behavior is demonstrated on the plasma-etched MOFs-based MIM cavity when external chemicals diffuse in the cavity.In addition,we generate patterned structure of the MOFs-based MIM cavity via plasma-mask method,which can transfer to different substrates and produce a controllable structure color change for chemical sensing.Our MIM cavity may promote the advancement and applications of structural color in security imaging,color display,information anticounterfeiting,and color printing.

    Single-atom alloys prepared by two-step thermal evaporation

    Honglin WangJing LiMeirong HuangJizhe Cui...
    2808-2813页
    查看更多>>摘要:Single-atom alloys(SAAs)have gained significant attention due to their remarkable atomic utilization efficiency,interactions between single atoms(SAs)and metal supports,and free-atom-like electronic structure of dopant elements.In this work,we observed the formation of SAs in pre-deposited metal particles by a two-step thermal evaporation technique,thereby establishing the first instance of discovering SAAs by thermal evaporation.The discovery of SAAs by thermal evaporation extends the range of SAAs preparation methods to include this traditional synthetic technique,which offers convenience,cost-efficiency,and universality.The formation mechanism of SAAs prepared using this technique was elucidated by density functional theory calculations.It was demonstrated that thermal evaporation can be utilized to prepare SAAs with multiple SAs,further highlighting its universal applicability.

    A scalable versatile methodology to construct micro/nano open-cell polypropylene foam with high oil adsorption capacity and speed

    Chenguang YangDechang TaoKun YanZhiyao Li...
    2814-2823页
    查看更多>>摘要:Oil pollution is a serious environmental and natural resource problem.Traditional adsorption materials for oil-water separation have limitations in terms of their preparation cost,reusability,and mechanical properties.Among the conventional adsorption materials,super-hydrophobic/super-lipophilic materials are easily contaminated by oil.In this study,polypropylene(PP)is used as a foam substrate to prepare an open-cell PP foam via hot pressing,supercritical CO2 foaming,and electron beam(EB)irradiation.The impact of EB irradiation dose on the open-cell content of PP foam can lead to cell wall rupture,resulting in an open-cell structure that enhances oil-water separation performance.At an absorbed radiation dose of 200 kGy,the PP foams exhibit optimal oil-water separation performance,cyclic compression stability,heat insulation,and preparation cost.The open-cell content of PP foam is increased to 86.5%,the adsorption capacity for diesel oil is 42.8 g/g,and the adsorption efficiency remains at 99.6%after 100 cycles of oil desorption in a complex pH environment.Meanwhile,cracks and nano-voids simultaneously promote the capillary action of oil,and the oil transport rate is 0.0713 g/(g·s).This study provides a new concept for the preparation of open-cell polymer foams that can meet the demand for high oil-absorption capacity under complex acid-base pH conditions.

    Bioinspired design of integral molded Janus silk fibroin-MXene evaporator for efficient solar vapor generation

    Ling-Qing KongZhi-Cheng ZengGuang-Zong MinZhao-Hui Meng...
    2824-2835页
    查看更多>>摘要:Solar vapor generation is a promising sustainable technology that uses solar distillation to produce fresh water from seawater and wastewater,helping relieve global water resource shortage.Here,inspired by naturally grown integrally molded mulberry leaves with a Janus hydrophilic and hydrophobic structure,a novel,simple,and efficient integrated molding method is proposed to break through the limitations of the traditional split manufacturing strategy and realizes the integrated formation of Janus evaporator.Based on the spontaneous sedimentation characteristics of MXene in silk fibroin solution and its regulation of mesoscopic structure and hydrophilicity of silk fibroin,layered structures with different compositions and hydrophilicities were obtained in one step.Meanwhile,ethanol and glutaraldehyde were added to construct a physical crystallization-chemical crosslinking dual stabilization structure in silk fibroin.Our evaporator has the evaporation rate of 3.07 kg·m2-2·h-1 and the efficiency of 86.8%under 1 sun and maintains high evaporation performance under various extreme test conditions including vigorous washing,repeated compression,and high-intensity ultraviolet(UV)irradiation.Additionally,the evaporator performs well in practical application scenarios,its evaporation rate in the simulated Dead Sea seawater exceeds 2.13 kg·m-2·h-1,and more than 99.9%of the salt,heavy metal ions,oil pollution,and dyes are purified.

    Mesenchymal stem cell-derived exosomes:Versatile nanomaterials for skin wound treatment

    Yuzhen XiaoHexi LiJunhui ZhangSongyun Yang...
    2836-2856页
    查看更多>>摘要:Accumulating studies reveal that mesenchymal stem cells(MSCs)promote skin wound healing mainly through the paracrine effects.Exosomes,one of the crucial paracrine mediators in wound healing,are cell-derived nanosized membranous vesicles containing diverse bioactive cargoes.With the potent ability of modulating skin cell behaviors,MSC-derived exosomes(MSC-Exos)are regarded as a promising nanomaterial for regenerative wound therapy.Under hostile conditions,MSC-Exos are efficient in protecting skin cells from severe damage and restoring their function.According to recent studies,MSC-Exos possess remarkable pro-healing effects in a variety of skin wounds,typically resulting in increased wound closure,inhibited scar tissue formation,and better restoration of skin function.To further enhance the therapeutic potential of MSC-Exos,the development of applicable pretreatment strategies and the optimization of exosome delivery are under intensive investigation.Herein,we summarize current research progress of MSC-Exos for skin wound treatment,with an emphasis on the biological effects of these nanovesicles,the repair mechanisms,and future challenges in clinical translation.

    Engineered plant extracellular vesicles for autoimmune diseases therapy

    Ruina HanYan WuYafei HanXiangfei Liu...
    2857-2873页
    查看更多>>摘要:Autoimmune diseases(AID)encompass a diverse array of conditions characterized by immune system dysregulation,resulting in aberrant responses of B cells and T cells against the body's own healthy tissues.Plant extracellular vesicles(PEVs)are nanoscale particles enclosed by phospholipid bilayers,secreted by plant cells,which facilitate intercellular communication by transporting various bioactive molecules.Due to their nanoscale structure,safety,abundant sources,low immunogenicity,high yield,biocompatibility,and effective targeting of the colon and liver,PEVs are regarded as a promising platform for the treatment of AID.This review provides a comprehensive summary of PEV biogenesis,physicochemical and biological properties,internalization mechanisms,isolation methods,and their applications in various diseases,with a specific focus on their potential roles in AID.Additionally,we propose engineering approaches and administration methods for PEVs.Finally,we present an overview of the advantages and challenges associated with utilizing PEVs for the treatment of AID.By gaining a comprehensive understanding of PEVs,we anticipate the development of innovative therapeutic strategies for AID.Natural and engineered PEVs hold substantial promise as a valuable resource for innovative technologies in AID treatment.

    Advances of nanoparticles in transmucosal drug delivery

    Li ZhangChangwei YangYingxiang SongTao Sheng...
    2874-2885页
    查看更多>>摘要:Transmucosal drug administration represents a potential strategy for enhancing treatment efficacy and reducing side effects by avoiding the first-pass effect into the systemic circulation and delivering therapeutics directly to the target disease site.However,many challenges still remain in its clinical application,including low drug availability and limited retention time in the mucosa.The burgeoning advancement of nanotechnologies offers great potential to overcome the above limitations,leveraging their distinct advantages of high drug-loading capacity and strong permeability.In this review,the latest developments of nanoparticles(NPs)in transmucosal drug delivery as well as their clinical applications are discussed.

    Reductive lipid nanoparticles loaded with vinorelbine inhibit chemotherapy-induced invasion of cancer cells by modulating ENPP2

    Xiaoqi ZhaoXuemeng GuoMei PangWeigen Qiu...
    2886-2898页
    查看更多>>摘要:Cancer is a predominant culprit behind worldwide death and accounts for up to 10 million deaths every year.Chemotherapy is the primary therapeutic method employed for cancer in clinical settings and is essential in controlling tumor progression.Despite the advances in this field,tumor invasion and metastasis during treatment remain a significant cause of treatment failure.Nevertheless,the underlying mechanisms involving such a disappointing phenomenon are still not fully elucidated.Vinorelbine(VNB)extends the lifespan of many cancer patients in the clinic as an emerging chemotherapy drug approved by Food and Drug Administration(FDA).However,VNB-induced tumor metastasis is still an intractable problem,which may be closely related to the abnormal oxidative stress generated during VNB-mediated treatment.Hence,the study aims to construct a reductive nanosystem loaded with VNB,called VNB-VNP,to improve cancer cure rates and reduce tumor metastasis.With the reductive component vitamin E,VNB-VNP can effectively reduce oxidative stress and significantly outperform free VNB in preventing tumor progression.The transcriptome analysis shows that VNB-VNP can alleviate the over-expression of ectonucleotide pyrophosphatase/phosphodiesterase 2(ENPP2),which may be the main reason why VNB-VNP can inhibit tumor invasion and metastasis.Overall,the research designs a new platform for VNB treatment,which demonstrates promising efficacy in inhibiting neoplastic progression and identifies a new mechanism associated with VNB-induced tumor metastasis,which may offer several valuable references for enhancing chemotherapy efficacy in clinical anti-tumor therapy.

    Scalable synthesis of lipid nanoparticles for nucleic acid drug delivery using an isometric channel-size enlarging strategy

    Zesen MaHaiyang TongSijin LinLi Zhou...
    2899-2907页
    查看更多>>摘要:Lipid nanoparticles(LNPs)have emerged as highly effective delivery systems for nucleic acid-based therapeutics.However,the broad clinical translation of LNP-based drugs is hampered by the lack of robust and scalable synthesis techniques that can consistently produce formulations from early development to clinical application.In this work,we proposed a method to achieve scalable synthesis of LNPs by scaling inertial microfluidic mixers isometrically in three dimensions.Moreover,a theoretical predictive method,which controls the mixing time to be equal across different chips,is developed to ensure consistent particle size and size distribution of the synthesized LNPs.LNPs loaded with small interfering RNA(siRNA)were synthesized at different flow rates,exhibiting consistent physical properties,including particle size,size distribution and encapsulation efficiency.This work provides a practical approach for scalable synthesis of LNPs consistently,offering the potential to accelerate the transition of nucleic acid drug development into clinical application.

    Fine-tuning the structure-tolerance-antitumor efficacy axis of prodrug nanoassemblies via branched aliphatic functionalization

    Guanting LiFengli XiaHongying XiaoShunzhe Zheng...
    2908-2918页
    查看更多>>摘要:Small-molecule prodrug nanoassemblies have emerged as efficient antitumor drug delivery systems.However,in the case of camptothecins-based prodrug nanoassemblies,linear aliphatic side chain modification often results in rod-shaped or irregularly shaped nanoassemblies,which are highly unfavorable for sterilization through filtration,and may cause capillary blockage upon intravenous injection.The rational design of camptothecins-based prodrug nanoassemblies remains a challenge.Herein,we propose that branched aliphatic alcohol(BAA)functionalization could fine-tune the structure-tolerance-antitumor efficacy axis of prodrug nanoassemblies.Correspondingly,four SN38-BAA prodrugs were synthesized by conjugating 7-ethyl-10-hydroxycamptothecin(SN38)with BAAs of varying lengths via a tumor redox-responsive disulfide bond,which self-assemble into uniform spherical nanoparticles.The length of BAA was found to significant impact the multiple drug delivery process,including colloidal stability,drug release profiles and pharmacokinetics.Overall,SN38-C21 NPs(SN38-11-heneicosanol nanoparticles),featuring the longest BAA,showcased multiple therapeutic advantages,ultimately culminating the optimal antitumor efficacy and tolerance.The findings underscore the potential of BAA functionalization in strengthening the therapeutic outcomes of prodrug nanoassemblies,and provide valuable insights for developing translational camptothecins-based nanomedicines.