首页期刊导航|中国神经再生研究(英文版)
期刊信息/Journal information
中国神经再生研究(英文版)
中国康复医学会
中国神经再生研究(英文版)

中国康复医学会

旬刊

1673-5374

bwb@nrronline.com

024-23381085

110004

沈阳1234邮政信箱

中国神经再生研究(英文版)/Journal Neural Regeneration ResearchCSCDCSTPCD北大核心SCI
查看更多>>SCI收录杂志!!! 本刊为英文版杂志,以国际通用语言研究最前沿、最热点的神经再生问题。创刊起点高,评估论文研究成果的学术标准高,对论文语言表述水平的要求高。 刊物宗旨: 2006年创刊,面向国际、立足国际,以办好一本国际神经再生学科界专家公认的专业性学术期刊为工作目标,主要发表神经再生领域基础及应用基础研究方面的学术文章。 出版重点: 2009年本刊重点出版对神经损伤修复过程中原位神经干细胞以及移植的神经干细胞作用机制的研究,出版神经组织工程、神经退行性疾病组织形态学变化以及中医药对神经细胞、神经组织再生过程中生理、病理结构变化影响的相关研究文章。面向国际,立足国际,关注全球范围内具有创新性的抑制、促进或影响神经细胞、神经组织再生结构变化相关机制的研究,关注由此而发生的一系列功能变化及其相互关系。 感兴趣神经解剖学、病理学、生理学、生物化学、药理学、免疫学、发育学等来自多学科、多层面的题材,感兴趣发表以基础实验性研究为主的揭示大脑皮质、海马、松果体、神经胶质细胞、脊髓神经元、周围神经元以及运动和感觉神经损伤与再生的研究原著,对有助于认识神经再生正常和异常机制的临床类文章,如罕见病例报告、调查分析等也可纳入范围。 欢迎文章从理论假设、研究方法、模型制备、影像学技术等多个视角描述神经再生的相关特点,为读者提供该领域最有价值的学科进展信息及其最新的理论观点,增强对神经再生复杂机制、学说和病理发生过程的理解。一般文章2000-4000单词。 非常注重出版时效。投稿15~30天编辑部采用随机盲法抽取国际评审专家审稿,符合采用标准的文章进入修稿程序,力求出版周期120~180天,以保证高质量优秀稿件抢先出版。 收录情况: 科学引文索引(SCI) 2006年被SCI引文库收录8篇 2008年1月至2008年7月被SCI收录文章188篇 美国生物学文献数据库(BIOSIS) 美国《化学文摘》(CA) 荷兰《医学文摘库/医学文摘》(EM) 波兰《哥伯尼索引》(IC) 中国英文版科技期刊数据库(统计源期刊) 中国科学引文数据库(核心期刊) 2007年被CA收录247篇,被EM收录173篇
正式出版
收录年代

    Calcium-sensitive protein MLC1 as a possible modulator of the astrocyte functional state

    Elena AmbrosiniAngela LanciottiMaria Stefania Brignone
    2008-2010页

    Gene therapy for spinal muscular atrophy:perspectives on the possibility of optimizing SMN1 delivery to correct all neurological and systemic perturbations

    Sharon J.BrownRafael J.Yáñez-MuñozHeidi R.Fuller
    2011-2012页

    Generation of brain vascular heterogeneity:recent advances from the perspective of angiogenesis

    Nathanael J.LeeRyota L.Matsuoka
    2013-2014页

    Perilipin-2 mediates ferroptosis in oligodendrocyte progenitor cells and myelin injury after ischemic stroke

    Jian YangJiang WuXueshun XiePengfei Xia...
    2015-2028页
    查看更多>>摘要:Differentiation of oligodendrocyte progenitor cells into mature myelin-forming oligodendrocytes contributes to remyelination.Failure of remyelination due to oligodendrocyte progenitor cell death can result in severe nerve damage.Ferroptosis is an iron-dependent form of regulated cell death caused by membrane rupture induced by lipid peroxidation,and plays an important role in the pathological process of ischemic stroke.However,there are few studies on oligodendrocyte progenitor cell ferroptosis.We analyzed transcriptome sequencing data from GEO databases and identified a role of ferroptosis in oligodendrocyte progenitor cell death and myelin injury after cerebral ischemia.Bioinformatics analysis suggested that perilipin-2(PLIN2)was involved in oligodendrocyte progenitor cell ferroptosis.PLIN2 is a lipid storage protein and a marker of hypoxia-sensitive lipid droplet accumulation.For further investigation,we established a mouse model of cerebral ischemia/reperfusion.We found significant myelin damage after cerebral ischemia,as well as oligodendrocyte progenitor cell death and increased lipid peroxidation levels around the infarct area.The ferroptosis inhibitor,ferrostatin-1,rescued oligodendrocyte progenitor cell death and subsequent myelin injury.We also found increased PLIN2 levels in the peri-infarct area that co-localized with oligodendrocyte progenitor cells.Plin2 knockdown rescued demyelination and improved neurological deficits.Our findings suggest that targeting PLIN2 to regulate oligodendrocyte progenitor cell ferroptosis may be a potential therapeutic strategy for rescuing myelin damage after cerebral ischemia.

    A promising approach for quantifying focal stroke modeling and assessing stroke progression:optical resolution photoacoustic microscopy photothrombosis

    Xiao LiangXingping QuanXiaorui GengYujing Huang...
    2029-2037页
    查看更多>>摘要:To investigate the mechanisms underlying the onset and progression of ischemic stroke,some methods have been proposed that can simultaneously monitor and create embolisms in the animal cerebral cortex.However,these methods often require complex systems and the effect of age on cerebral embolism has not been adequately studied,although ischemic stroke is strongly age-related.In this study,we propose an optical-resolution photoacoustic microscopy-based visualized photothrombosis methodology to create and monitor ischemic stroke in mice simultaneously using a 532 nm pulsed laser.We observed the molding process in mice of different ages and presented age-dependent vascular embolism differentiation.Moreover,we integrated optical coherence tomography angiography to investigate age-associated trends in cerebrovascular variability following a stroke.Our imaging data and quantitative analyses underscore the differential cerebrovascular responses to stroke in mice of different ages,thereby highlighting the technique's potential for evaluating cerebrovascular health and unraveling age-related mechanisms involved in ischemic strokes.

    NOX4 exacerbates Parkinson's disease pathology by promoting neuronal ferroptosis and neuroinflammation

    Zhihao LinChangzhou YingXiaoli SiNaijia Xue...
    2038-2052页
    查看更多>>摘要:Parkinson's disease is primarily caused by the loss of dopaminergic neurons in the substantia nigra compacta.Ferroptosis,a novel form of regulated cell death characterized by iron accumulation and lipid peroxidation,plays a vital role in the death of dopaminergic neurons.However,the molecular mechanisms underlying ferroptosis in dopaminergic neurons have not yet been completely elucidated.NADPH oxidase 4 is related to oxidative stress,however,whether it regulates dopaminergic neuronal ferroptosis remains unknown.The aim of this study was to determine whether NADPH oxidase 4 is involved in dopaminergic neuronal ferroptosis,and if so,by what mechanism.We found that the transcriptional regulator activating transcription factor 3 increased NADPH oxidase 4 expression in dopaminergic neurons and astrocytes in an 1-methyl-4-phenyl-1,2,3,6 tetrahydropyridine-induced Parkinson's disease model.NADPH oxidase 4 inhibition improved the behavioral impairments observed in the Parkinson's disease model animals and reduced the death of dopaminergic neurons.Moreover,NADPH oxidase 4 inhibition reduced lipid peroxidation and iron accumulation in the substantia nigra of the Parkinson's disease model animals.Mechanistically,we found that NADPH oxidase 4 interacted with activated protein kinase C α to prevent ferroptosis of dopaminergic neurons.Furthermore,by lowering the astrocytic lipocalin-2 expression,NADPH oxidase 4 inhibition reduced 1-methyl-4-phenyl-1,2,3,6 tetrahydropyridine-induced neuroinflammation.These findings demonstrate that NADPH oxidase 4 promotes ferroptosis of dopaminergic neurons and neuroinflammation,which contribute to dopaminergic neuron death,suggesting that NADPH oxidase 4 is a possible therapeutic target for Parkinson's disease.

    Prolonged intermittent theta burst stimulation restores the balance between A2AR-and A1R-mediated adenosine signaling in the 6-hydroxidopamine model of Parkinson's disease

    Milica Zeljkovic JovanovicJelena StanojevicIvana StevanovicMilica Ninkovic...
    2053-2067页
    查看更多>>摘要:An imbalance in adenosine-mediated signaling,particularly the increased A2AR-mediated signaling,plays a role in the pathogenesis of Parkinson's disease.Existing therapeutic approaches fail to alter disease progression,demonstrating the need for novel approaches in PD.Repetitive transcranial magnetic stimulation is a non-invasive approach that has been shown to improve motor and non-motor symptoms of Parkinson's disease.However,the underlying mechanisms of the beneficial effects of repetitive transcranial magnetic stimulation remain unknown.The purpose of this study is to investigate the extent to which the beneficial effects of prolonged intermittent theta burst stimulation in the 6-hydroxydopamine model of experimental parkinsonism are based on modulation of adenosine-mediated signaling.Animals with unilateral 6-hydroxydopamine lesions underwent intermittent theta burst stimulation for 3 weeks and were tested for motor skills using the Rotarod test.Immunoblot,quantitative reverse transcription polymerase chain reaction,immunohistochemistry,and biochemical analysis of components of adenosine-mediated signaling were performed on the synaptosomal fraction of the lesioned caudate putamen.Prolonged intermittent theta burst stimulation improved motor symptoms in 6-hydroxydopamine-lesioned animals.A 6-hydroxydopamine lesion resulted in progressive loss of dopaminergic neurons in the caudate putamen.Treatment with intermittent theta burst stimulation began 7 days after the lesion,coinciding with the onset of motor symptoms.After treatment with prolonged intermittent theta burst stimulation,complete motor recovery was observed.This improvement was accompanied by downregulation of the eN/CD73-A2AR pathway and a return to physiological levels of A1R-adenosine deaminase 1 after 3 weeks of intermittent theta burst stimulation.Our results demonstrated that 6-hydroxydopamine-induced degeneration reduced the expression of A1R and elevated the expression of A2AR.Intermittent theta burst stimulation reversed these effects by restoring the abundances of A1R and A2AR to control levels.The shift in ARs expression likely restored the balance between dopamine-adenosine signaling,ultimately leading to the recovery of motor control.

    FUBP3 mediates the amyloid-β-induced neuronal NLRP3 expression

    Jing YaoYuan LiXi LiuWenping Liang...
    2068-2083页
    查看更多>>摘要:Alzheimer's disease is characterized by deposition of amyloid-β,which forms extracellular neuritic plaques,and accumulation of hyperphosphorylated tau,which aggregates to form intraneuronal neurofibrillary tangles,in the brain.The NLRP3 inflammasome may play a role in the transition from amyloid-β deposition to tau phosphorylation and aggregation.Because NLRP3 is primarily found in brain microglia,and tau is predominantly located in neurons,it has been suggested that NLRP3 expressed by microglia indirectly triggers tau phosphorylation by upregulating the expression of pro-inflammatory cytokines.Here,we found that neurons also express NLRP3 in vitro and in vivo,and that neuronal NLRP3 regulates tau phosphorylation.Using biochemical methods,we mapped the minimal NLRP3 promoter and identified FUBP3 as a transcription factor regulating NLRP3 expression in neurons.In primary neurons and the neuroblastoma cell line Neuro2A,FUBP3 is required for endogenous NLRP3 expression and tau phosphorylation only when amyloid-β is present.In the brains of aged wild-type mice and a mouse model of Alzheimer's disease,FUBP3 expression was markedly increased in cortical neurons.Transcriptome analysis suggested that FUBP3 plays a role in neuron-mediated immune responses.We also found that FUBP3 trimmed the 5'end of DNA fragments that it bound,implying that FUBP3 functions in stress-induced responses.These findings suggest that neuronal NLRP3 may be more directly involved in the amyloid-β-to-phospho-tau transition than microglial NLRP3,and that amyloid-β fundamentally alters the regulatory mechanism of NLRP3 expression in neurons.Given that FUBP3 was only expressed at low levels in young wild-type mice and was strongly upregulated in the brains of aged mice and Alzheimer's disease mice,FUBP3 could be a safe therapeutic target for preventing Alzheimer's disease progression.

    A novel flexible nerve guidance conduit promotes nerve regeneration while providing excellent mechanical properties

    Tong LiQuhan ChengJingai ZhangBoxin Liu...
    2084-2094页
    查看更多>>摘要:Autografting is the gold standard for surgical repair of nerve defects>5 mm in length;however,autografting is associated with potential complications at the nerve donor site.As an alternative,nerve guidance conduits may be used.The ideal conduit should be flexible,resistant to kinks and lumen collapse,and provide physical cues to guide nerve regeneration.We designed a novel flexible conduit using electrospinning technology to create fibers on the innermost surface of the nerve guidance conduit and employed melt spinning to align them.Subsequently,we prepared disordered electrospun fibers outside the aligned fibers and helical melt-spun fibers on the outer wall of the electrospun fiber lumen.The presence of aligned fibers on the inner surface can promote the extension of nerve cells along the fibers.The helical melt-spun fibers on the outer surface can enhance resistance to kinking and compression and provide stability.Our novel conduit promoted nerve regeneration and functional recovery in a rat sciatic nerve defect model,suggesting that it has potential for clinical use in human nerve injuries.

    Polyethylene glycol fusion repair of severed rat sciatic nerves reestablishes axonal continuity and reorganizes sensory terminal fields in the spinal cord

    Emily A.HibbardLiwen ZhouCathy Z.YangKarthik Venkudusamy...
    2095-2107页
    查看更多>>摘要:Peripheral nerve injuries result in the rapid degeneration of distal nerve segments and immediate loss of motor and sensory functions;behavioral recovery is typically poor.We used a plasmalemmal fusogen,polyethylene glycol(PEG),to immediately fuse closely apposed open ends of severed proximal and distal axons in rat sciatic nerves.We have previously reported that sciatic nerve axons repaired by PEG-fusion do not undergo Wallerian degeneration,and PEG-fused animals exhibit rapid(within 2-6 weeks)and extensive locomotor recovery.Furthermore,our previous report showed that PEG-fusion of severed sciatic motor axons was non-specific,i.e.,spinal motoneurons in PEG-fused animals were found to project to appropriate as well as inappropriate target muscles.In this study,we examined the consequences of PEG-fusion for sensory axons of the sciatic nerve.Young adult male and female rats(Sprague-Dawley)received either a unilateral single cut or ablation injury to the sciatic nerve and subsequent repair with or without(Negative Control)the application of PEG.Compound action potentials recorded immediately after PEG-fusion repair confirmed conduction across the injury site.The success of PEG-fusion was confirmed through Sciatic Functional Index testing with PEG-fused animals showing improvement in locomotor function beginning at 35 days postoperatively.At 2-42 days postoperatively,we anterogradely labeled sensory afferents from the dorsal aspect of the hindpaw following bilateral intradermal injection of wheat germ agglutinin conjugated horseradish peroxidase.PEG-fusion repair reestablished axonal continuity.Compared to unoperated animals,labeled sensory afferents ipsilateral to the injury in PEG-fused animals were found in the appropriate area of the dorsal horn,as well as inappropriate mediolateral and rostrocaudal areas.Unexpectedly,despite having intact peripheral nerves,similar reorganizations of labeled sensory afferents were also observed contralateral to the injury and repair.This central reorganization may contribute to the improved behavioral recovery seen after PEG-fusion repair,supporting the use of this novel repair methodology over currently available treatments.