首页期刊导航|农业科学学报(英文)
期刊信息/Journal information
农业科学学报(英文)
中国农业科学院农业信息研究所
农业科学学报(英文)

中国农业科学院农业信息研究所

翟虎渠

月刊

2095-3119

zgnykx@mail.caas.net.cn

010-82106283 82106280

100081

北京中关村南大街12号

农业科学学报(英文)/Journal Journal of Integrative AgricultureCSCDCSTPCD北大核心SCI
查看更多>>本刊创刊于2002年,由中国农业科学院、中国农学会主办,中国农业科学院农业信息研究所承办。刊登农牧业基础科学和应用科学的研究论文,覆盖作物科学、动物科学、农业环境、农业经济与管理等领域。
正式出版
收录年代

    Duplicated chaicone synthase(CHS)genes modulate flavonoid production in tea plants in response to light stress

    Mingzhuo LiWenzhao WangYeru WangLili Guo...
    1940-1955页
    查看更多>>摘要:In tea plants,the abundant flavonoid compounds are responsible for the health benefits for the human body and define the astringent flavor profile.While the downstream mechanisms of flavonoid biosynthesis have been extensively studied,the role of chalcone synthase(CHS)in this secondary metabolic process in tea plants remains less clear.In this study,we compared the evolutionary profile of the flavonoid metabolism pathway and discovered that gene duplication of CHS occurred in tea plants.We identified three CsCHS genes,along with a CsCHS-like gene,as potential candidates for further functional investigation.Unlike the CsCHS-like gene,the CsCHS genes effectively restored flavonoid production in Arabidopsis chs-mutants.Additionally,CsCHS transgenic tobacco plants exhibited higher flavonoid compound accumulation compared to their wild-type counterparts.Most notably,our examination of promoter and gene expression levels for the selected CHS genes revealed distinct responses to UV-B stress in tea plants.Our findings suggest that environmental factors such as UV-B exposure could have been the key drivers behind the gene duplication events in CHS.

    The DNA damage repair complex MoMMS21-MoSMC5 is required for infection-related development and pathogenicity of Magnaporthe oryzae

    Yue JiangRong WangLili DuXueyu Wang...
    1956-1966页
    查看更多>>摘要:The conserved DNA damage repair complex,MMS21-SMC5/6(Methyl methane sulfonate 21-Structural maintenance of chromosomes 5/6),has been extensively studied in yeast,animals,and plants.However,its role in phytopathogenic fungi,particularly in the highly destructive rice blast fungus Magnaporthe oryzae,remains unknown.In this study,we functionally characterized the homologues of this complex,MoMMS21 and MoSMC5,in M.oryzae.We first demonstrated the importance of DNA damage repair in M.oryzae by showing that the DNA damage inducer phleomycin inhibited vegetative growth,infection-related development and pathogenicity in this fungus.Additionally,we discovered that MoMMS21 and MoSMC5 interacted in the nuclei,suggesting that they also function as a complex in M.oryzae.Gene deletion experiments revealed that both MoMMS21 and MoSMC5 are required for infection-related development and pathogenicity in M.oryzae,while only MoMMS21 deletion affected growth and sensitivity to phleomycin,indicating its specific involvement in DNA damage repair.Overall,our results provide insights into the roles of MoMMS21 and MoSMC5 in M.oryzae,highlighting their functions beyond DNA damage repair.

    A bacterial protein Rhp-PSP inhibits plant viral proliferation through endoribonuclease activity

    Lijie ChenQianze PengXiaohua DuWeixing Zhang...
    1967-1978页
    查看更多>>摘要:Plant virus causes massive crop losses globally.However,there is currently no effective measure to control plant viral disease.Previously,we identify an antiviral protein Rhp-PSP,produced by the bacterial Rhodopseudomonas palustris strain JSC-3b.In this study,we discover that the antiviral activity of Rhp-PSP relies on its endoribonuclease activity.Converting the arginine(R)residue at position 129 onto alanine(A)abolishs its endoribonuclease activity on coat protein(CP)RNA of tobacco mosaic virus(TMV),consequentially,compromises the antiviral activity of Rhp-PSP.Further investigation demonstrates that,the mutant Rhp-PSPR129A is unable to form the homotrimer as the wild type,indicating the importance of quaternary junction for the endoribonuclease activity.Overexpression of Rhp-PSP in Nicotiana benthamiana significantly enhances the resistance against TMV of seedlings,while expression of Rhp-PSPR129Adid not,confirming that endoribonuclease activity is responsible for the antiviral activity of Rhp-PSP.In addition,foliar spray of Rhp-PSP solution on tomato and pepper plants significantly reduces the disease index of viral diseases,indicating that Rhp-PSP shows potential to develop antiviral agent in practice.

    Eureka lemon zinc finger protein CIDOF3.4 interacts with citrus yellow vein clearing virus coat protein to inhibit viral infection

    Ping LiaoTing ZengMengyang HuangfuCairong Zheng...
    1979-1993页
    查看更多>>摘要:Citrus yellow vein clearing virus(CYVCV)is a new citrus virus that has become an important factor restricting the development of China's citrus industry,and the CYVCV coat protein(CP)is associated with viral pathogenicity.In this study,the Eureka lemon zinc finger protein(ZFP)CIDOF3.4 was shown to interact with CYVCV CP in vivo and in vitro.Transient expression of CIDOF3.4 in Eureka lemon induced the expression of salicylic acid(SA)-related and hypersensitive response marker genes,and triggered a reactive oxygen species burst,ion leakage necrosis,and the accumulation of free SA.Furthermore,the CYVCV titer in CIDOF3.4 transgenic Eureka lemon plants was approximately 69.4%that in control plants 6 mon after inoculation,with only mild leaf chlorotic spots observed in those transgenic plants.Taken together,the results indicate that CIDOF3.4 not only interacts with CP but also induces an immune response in Eureka lemon by inducing the SA pathways.This is the first report that ZFP is involved in the immune response of a citrus viral disease,which provides a basis for further study of the molecular mechanism of CYVCV infection.

    Identification of transient receptor potential channel genes and functional characterization of TRPA1 in Spodoptera frugiperda

    Yutong ZhangHangwei LiuSong CaoBin Li...
    1994-2005页
    查看更多>>摘要:Spodoptera frugiperda is a highly destructive pest that has become a global problem due to its robust reproductive and migratory capabilities.Transient receptor potential(TRP)channels,which constitute a vast ion channel family,play pivotal roles in sensing the external environment and maintaining internal homeostasis in insects.TRP channels have been widely investigated for their critical roles in regulating various insect behaviors in recent years.In this study,we identified 15 TRP gene loci encoding 26 transcripts in the genome of S.frugiperda and analyzed their expression profiles at different developmental stages.The results revealed that S.frugiperda possesses four TRPC genes,six TRPA genes,one TRPM gene,two TRPV genes,one TRPN gene,and one TRPML gene,while a canonical TRPP is absent.Moreover,the SfruTRPA1 was functionally characterized using the Xenopus oocyte expression system.The results showed that SfruTRPA1 is activated by temperature increases from 20 to 45℃,and there is no significant desensitization after repeated stimuli within the same temperature range.Additionally,SfruTRPA1 is activated by certain natural chemicals,including allyl isothiocyanate(AITC)and cinnamaldehyde(CA).These findings provide valuable insights to the TRP genes in S.frugiperda.

    CRISPR/Cas9-mediated NIInR2 mutants:Analyses of residual mRNA and truncated proteins

    Jun LüJingxiang ChenYutao HuLin Chen...
    2006-2017页
    查看更多>>摘要:CRISPR/Cas9 technology is a powerful genome manipulation tool in insects.However,little is known about whether mRNA and protein of a target gene are completely cleared in homozygous mutants.This study generated homozygous mutants of the insulin receptor gene 2(NIInR2)in the brown planthopper(Nilaparvata lugens)using CRISPR/Cas9 genome editing.Both frameshift mutants,E5_D17 and E6_I7,differentiated towards long wings,but there were differences in wing morphology,with E5_D17 showing wing deformities.Subsequent investigations revealed the presence of residual expression of NIInR2 mRNA in both mutants,as well as the occurrence of spliceosomes featuring exon skipping splicing in E5_D17.Additionally,the E5_D17 exhibited the detection of N-terminally truncated NIInR2 protein.RNA interference experiments indicated that the knockdown of NIInR2 expression in the E5_D17 mutant line increased the proportion of wing deformities from 11.1 to 65.6%,suggesting that the residual NIInR2 mRNA of the E5_D17 mutant might have retained some genetic functions.Our results imply that systematic characterization of residual protein expression or function in CRISPR/Cas9-generated mutant lines is necessary for phenotypic interpretation.

    The life-history trait trade-offs mediated by reproduction and immunity in the brown planthopper,Nilaparvata lugens St?l

    Dan SunHongfeng WangJiahui ZengQiuchen Xu...
    2018-2032页
    查看更多>>摘要:Reproduction and immune defense are costly functions,and they are expected to tradeoff with each other to drive evolution.The brown planthopper(BPH),Nilaparvata lugens Stål(Hemiptera,Delphacidae),is a global superpest that mostly damages rice crops.Yeast-like symbionts(YLS)exist in the abdominal fat body tissue and are tightly associated with the development,growth,and reproduction of BPH.Our previous research demonstrated that mating behavior promotes the release of YLS from the fat body into the hemolymph in the BPH,thereby triggering an immune response.Additionally,the fitness costs related to life-history traits of BPH(such as survival rate)have a strong dependence on the relative abundance of YLS.However,the possible relationship between reproduction and the immune response in BPH has not been identified.In this study,an omics-based approach was used to analyze the transcriptome of fat body tissues in mated and unmated BPH at 72 h post-eclosion,from which two antimicrobial peptide genes,NIDefensin A(NIDfA)and NIDefensin B(NIDfB),were selected since they were highly expressed in mated BPH.Subsequently,the full-length cDNA sequences of the NIDfA and NIDfB genes were cloned and analyzed.qPCR results showed up-regulation of the NIDfA and NIDfB genes in mated BPH when compared to unmated BPH.Spatial-temporal expression analysis indicated that the NIDfA and NIDfB genes were expressed in all tissues and developmental stages,and they were most highly expressed in the fat body at 24 h post-eclosion.Moreover,the symbionts in BPH were significantly inhibited by the in vitro expression of the NIDfA and NIDfB proteins.Furthermore,RNA interference(RNAi)-mediated suppression of NIDfA and NIDfB dramatically increased the relative abundance of YLS in the fat body,while YLS in the hemolymph decreased significantly.These BPHs also displayed some fitness disadvantages in survival,fecundity,hatchability,and possibly the vertical transmission of YLS from hemolymph to egg.Our results indicated that mating could heighten the immunity of BPH by up-regulating the expression of the NIDfA and NIDfB genes,which protect the host from pathogen challenges during reproduction.However,the reduced content of YLS may act as a fitness disadvantage in dictating the life-history traits of BPH.This work has significant theoretical and practical implications for the precise green control technology that involves crucial gene targeting,as well as for the"endosymbionts for pest control"strategy in insects.

    Gut microbiome and serum metabolome analyses identify Bacteroides fragilis as regulators of serotonin content and PRL secretion in broody geese

    Yu ZhangNing ZhouJia WuLina Song...
    2033-2051页
    查看更多>>摘要:Broody behavior is regulated by hypothalamic prolactin secretion,which seriously affects egg production in poulty production.Numerous studies have provided evidence that animal behavior is governed by dynamic bidirectional communication between specific gut bacteria and their host via the brain-gut-microbiome axis.However,little research focused on how the gut microbiota influence broody behavior in poultry.In this study,Zhedong white geese in laying and brooding phases were selected.Ten differentially abundant bacteria in cecum were detected between brooding and laying geese through metagenomic analyses and 16S rRNA sequencing(P<0.05),and Bacteroides fragilis was specifically identified as a key driver species in the brooding geese.Moverover,the serum metabolites were quantified,and the 313 differentially abundant metabolites were found between the two groups of different physiological geese.They were primarily enriched in the tryptophan metabolism pathways.Pearson correlation analyses revealed there was a significant positive correlation between B.fragilis abundance and the context of 11 tryptophan metabolism-related metabolites(such as serotonin,etc.)in broody geese,which hinted that those tryptophan metabolites might be produced or driven by B.fragilis.Finally,the serum hormone levels were also measured.We found there was a positive correlation between B.fragilis abundance and content of serotonin.Besides,prolactin secreted by the pituitary gland was greater in brooding geese than that in laying geese,which was also highly correlated with B.fragilis abundance.This result implied that B.fragilis could promote the secretion of prolactin by the pituitary gland.Together,the current study findings provided the information on gut microbiota influencing broody behavior,B.fragilis produced or driven more serum serotonin,and stimulated the pituitary gland to secret more prolactin,which potentially offered a new enlightenment for the intervention of broody behavior in poultry.

    Antibodies elicited by Newcastle disease virus-vectored H7N9 avian influenza vaccine are functional in activating the complement system

    Zenglei HuYa HuangJiao HuXiaoquan Wang...
    2052-2064页
    查看更多>>摘要:H7N9 subtype avian influenza virus poses a great challenge for poultry industry.Newcastle disease virus(NDV)-vectored H7N9 avian influenza vaccines(NDVvecH7N9)are effective in disease control because they are protective and allow mass administration.Of note,these vaccines elicit undetectable H7N9-specific hemagglutination-inhibition(HI)but high IgG antibodies in chickens.However,the molecular basis and protective mechanism underlying this particular antibody immunity remain unclear.Herein,immunization with an NDVvecH7N9 induced low anti-H7N9 HI and virus neutralization titers but high levels of hemagglutinin(HA)-binding IgG antibodies in chickens.Three residues(S150,G151 and S152)in HA of H7N9 virus were identified as the dominant epitopes recognized by the NDVvecH7N9 immune serum.Passively transferred NDVvecH7N9 immune serum conferred complete protection against H7N9 virus infection in chickens.The NDVvecH7N9 immune serum can mediate a potent lysis of HA-expressing and H7N9 virus-infected cells and significantly suppress H7N9 virus infectivity.These activities of the serum were significantly impaired after heat-inactivation or treatment with complement inhibitor,suggesting the engagement of the complement system.Moreover,mutations in the 150-SGS-152 sites in HA resulted in significant reductions in cell lysis and virus neutralization mediated by the NDVvecH7N9 immune serum,indicating the requirement of antibody-antigen binding for complement activity.Therefore,antibodies induced by the NDVvecH7N9 can activate antibody-dependent complement-mediated lysis of H7N9 virus-infected cells and complement-mediated neutralization of H7N9 virus.Our findings unveiled a novel role of the complement in protection conferred by the NDVvecH7N9,highlighting a potential benefit of engaging the complement system in H7N9 vaccine design.

    Application of organic manure as a potential strategy to alleviate the limitation of microbial resources in soybean rhizospheric and bulk soils

    Zhimin WuXiaozeng HanXu ChenXinchun Lu...
    2065-2082页
    查看更多>>摘要:The development and vigor of soil microorganisms in terrestrial ecosystems are frequently constrained by the limited availability of essential elements such as carbon(C),nitrogen(N),and phosphorus(P).In this study,we investigated the impact of long-term application of varying levels of organic manure,low(7.5 Mg ha-1 yr-1),moderate(15.0 Mg ha-1 yr-1),and high(22.5 Mg ha-1 yr-1),on the stoichiometry of enzymes and the structures of the microbial communities in soybean rhizospheric and bulk soils.The main goal of this research was to examine how soil microbial resource limitations in the rhizosphere respond to different long-term fertilization strategies.The soil enzymatic activities were quantified,and the structure of the microbial community was assessed by analyzing phospholipid fatty acid profiles.When compared to the bulk soil,the rhizospheric soil had significant increases in microbial biomass carbon(MBC),nitrogen(MBN),and phosphorus(MBP),with MBC increasing by 54.19 to 72.86%,MBN by 47.30 to 48.17%,and MBP by 17.37 to 208.47%.Compared with the unfertilized control(CK),the total microbial biomasses of the rhizospheric(increased by 22.80 to 90.82%)and bulk soils(increased by 10.57 to 60.54%)both exhibited increases with the application of organic manure,and the rhizospheric biomass was higher than that of bulk soil.Compared with bulk soil,the activities of C-,N-and P-acquiring enzymes of rhizospheric soil increased by 22.49,14.88,and 29.45%under high levels of organic manure,respectively.Analyses of vector length,vector angle,and scatter plots revealed that both rhizospheric and bulk soils exhibited limitations in terms of both carbon(C)and phosphorus(P)availability.The results of partial least-squares path modelling indicated that the rhizospheric soil exhibited a more pronounced response to the rate of manure application than the bulk soil.The varying reactions of rhizospheric and bulk soils to the extended application of organic manure underscore the crucial function of the rhizosphere in mitigating limitations related to microbial resources,particularly in the context of different organic manure application rates.