首页期刊导航|农业科学学报(英文)
期刊信息/Journal information
农业科学学报(英文)
中国农业科学院农业信息研究所
农业科学学报(英文)

中国农业科学院农业信息研究所

翟虎渠

月刊

2095-3119

zgnykx@mail.caas.net.cn

010-82106283 82106280

100081

北京中关村南大街12号

农业科学学报(英文)/Journal Journal of Integrative AgricultureCSCDCSTPCD北大核心SCI
查看更多>>本刊创刊于2002年,由中国农业科学院、中国农学会主办,中国农业科学院农业信息研究所承办。刊登农牧业基础科学和应用科学的研究论文,覆盖作物科学、动物科学、农业环境、农业经济与管理等领域。
正式出版
收录年代

    Genetic analysis and fine mapping of a grain size QTL in the small-grain sterile rice line Zhuo201S

    Bin LeiJiale ShaoFeng ZhangJian Wang...
    2155-2163页
    查看更多>>摘要:The development and application of the small-grain rice sterile line Zhuo201S(Z201S)has demonstrated its potential for mechanized hybrid rice seed production,leading to significant cost reductions.However,the molecular mechanism responsible for the small-grain size characteristic of Z201S remains unclear.In this study,we conducted a genetic analysis using near-isogenic lines constructed from Z210S,a small-grain rice sterile line,and R2115,a normal-grain variety.The results revealed that the small-grain trait in Z201S is governed by a single partially dominant gene which also enhances grain number.Through mapping,we localized the causal gene to the short arm of chromosome 2,within a 113 kb physical region delimited by the molecular markers S2-4-1 and LB63.Transgenic analysis and gene expression assays indicated LOC_Os02g14760 as the most likely candidate gene,suggesting that the small-grain size trait of Z201S is controlled by a novel locus that has not been previously identified.

    Identification of P-type plasma membrane H+-ATPases in common wheat and characterization of TaHA7 associated with seed dormancy and germination

    Bingli JiangWei GaoYating JiangShengnan Yan...
    2164-2177页
    查看更多>>摘要:The P-type plasma membrane(PM)H+-ATPases(HAs)are crucial for plant development,growth,and defense.The HAs have been thoroughly characterized in many different plants.However,despite their importance,the functions of HAs in germination and seed dormancy(SD)have not been validated in wheat.Here,we identified 28 TaHA genes(TaHA1-28)in common wheat,which were divided into five subfamilies.An examination of gene expression in strong-and weak-SD wheat varieties led to the discovery of six candidate genes(TaHA7/-12/-14/-16/-18/-20).Based on a single nucleotide polymorphism(SNP)mutation(C/T)in the TaHA7 coding region,a CAPS marker(HA7)was developed and validated in 168 wheat varieties and 171 Chinese mini-core collections that exhibit diverse germination and SD phenotypes.We further verified the roles of the two allelic variations of TaHA7 in germination and SD using wheat mutants mutagenized with ethyl methane sulphonate(EMS)in'Jimai 22'and'Jing 411'backgrounds,and in transgenic Arabidopsis lines.TaHA7 appears to regulate germination and SD by mediating gibberellic acid(GA)and abscisic acid(ABA)signaling,metabolism,and biosynthesis.The results presented here will enable future research regarding the TaHAs in wheat.

    Population genomic analysis reveals key genetic variations and the driving force for embryonic callus induction capability in maize

    Peng LiuLanglang MaSiyi JianYao He...
    2178-2195页
    查看更多>>摘要:Genetic transformation has been an effective technology for improving the agronomic traits of maize.However,it is highly reliant on the use of embryonic callus(EC)and shows a serious genotype dependence.In this study,we performed genomic sequencing for 80 core maize germplasms and constructed a high-density genomic variation map using our newly developed pipeline(MQ2Gpipe).Based on the induction rate of EC(REC),these inbred lines were categorized into three subpopulations.The low-REC germplasms displayed more abundant genetic diversity than the high-REC germplasms.By integrating a genome-wide selective signature screen and region-based association analysis,we revealed 95.23 Mb of selective regions and 43 REC-associated variants.These variants had phenotypic variance explained values ranging between 21.46 and 49.46%.In total,103 candidate genes were identified within the linkage disequilibrium regions of these REC-associated loci.These genes mainly participate in regulation of the cell cycle,regulation of cytokinesis,and other functions,among which MYB15 and EMB2745 were located within the previously reported QTL for EC induction.Numerous leaf area-associated variants with large effects were closely linked to several REC-related loci,implying a potential synergistic selection of REC and leaf size during modern maize breeding.

    Genetic analysis and candidate gene identification of salt tolerance-related traits in maize

    Hui FangXiuyi FuHanqiu GeMengxue Jia...
    2196-2210页
    查看更多>>摘要:Soil salinization poses a threat to maize production worldwide,but the genetic mechanism of salt tolerance in maize is not well understood.Therefore,identifying the genetic components underlying salt tolerance in maize is of great importance.In the current study,a teosinte-maize BC2F7 population was used to investigate the genetic basis of 21 salt tolerance-related traits.In total,125 QTLs were detected using a high-density genetic bin map,with one to five QTLs explaining 6.05-32.02%of the phenotypic variation for each trait.The total phenotypic variation explained(PVE)by all detected QTLs ranged from 6.84 to 63.88%for each trait.Of all 125 QTLs,only three were major QTLs distributed in two genomic regions on chromosome 6,which were involved in three salt tolerance-related traits.In addition,10 pairs of epistatic QTLs with additive effects were detected for eight traits,explaining 0.9 to 4.44%of the phenotypic variation.Furthermore,18 QTL hotspots affecting 3-7 traits were identified.In one hotspot(L5),a gene cluster consisting of four genes(ZmNSA1,SAG6,ZmCLCg,and ZmHKT1;2)was found,suggesting the involvement of multiple pleiotropic genes.Finally,two important candidate genes,Zm00001d002090 and Zm00001d002391,were found to be associated with salt tolerance-related traits by a combination of linkage and marker-trait association analyses.Zm00001d002090 encodes a calcium-dependent lipid-binding(CaLB domain)family protein,which may function as a Ca2+sensor for transmitting the salt stress signal downstream,while Zm00001d002391 encodes a ubiquitin-specific protease belonging to the C19-related subfamily.Our findings provide valuable insights into the genetic basis of salt tolerance-related traits in maize and a theoretical foundation for breeders to develop enhanced salt-tolerant maize varieties.

    Heterogeneous population distribution enhances resistance to wheat lodging by optimizing the light environment

    Yibo HuFeng QinZhen WuXiaoqin Wang...
    2211-2226页
    查看更多>>摘要:Lodging is still the key factor that limits continuous increases in wheat yields today,because the mechanical strength of culms is reduced due to low-light stress in populations under high-yield cultivation.The mechanical properties of the culm are mainly determined by lignin,which is affected by the light environment.However,little is known about whether the light environment can be sufficiently improved by changing the population distribution to inhibit culm lodging.Therefore,in this study,we used the wheat cultivar"Xinong 979"to establish a low-density homogeneous distribution treatment(LD),high-density homogeneous distribution treatment(HD),and high-density heterogeneous distribution treatment(HD-h)to study the regulatory effects and mechanism responsible for differences in the lodging resistance of wheat culms under different population distributions.Compared with LD,HD significantly reduced the light transmittance in the middle and basal layers of the canopy,the net photosynthetic rate in the middle and lower leaves of plants,the accumulation of lignin in the culm,and the breaking resistance of the culm,and thus the lodging index values increased significantly,with lodging rates of 67.5%in 2020-2021 and 59.3%in 2021-2022.Under HD-h,the light transmittance and other indicators in the middle and basal canopy layers were significantly higher than those under HD,and the lodging index decreased to the point that no lodging occurred.Compared with LD,the activities of phenylalanine ammonia-Lyase(PAL),4-coumarate:coenzyme A ligase(4CL),catechol-O-methyltransferase(COMT),and cinnamyl-alcohol dehydrogenase(CAD)in the lignin synthesis pathway were significantly reduced in the culms under HD during the critical period for culm formation,and the relative expression levels of TaPAL,Ta4CL,TaCOMT,and TaCAD were significantly downregulated.However,the activities of lignin synthesis-related enzymes and their gene expression levels were significantly increased under HD-h compared with HD.A partial least squares path modeling analysis found significant positive effects between the canopy light environment,the photosynthetic capacity of the middle and lower leaves of plants,lignin synthesis and accumulation,and lodging resistance in the culms.Thus,under conventional high-density planting,the risk of wheat lodging was significantly higher.Accordingly,the canopy light environment can be optimized by changing the heterogeneity of the population distribution to improve the photosynthetic capacity of the middle and lower leaves of plants,promote lignin accumulation in the culm,and enhance lodging resistance in wheat.These findings provide a basis for understanding the mechanism responsible for the lower mechanical strength of the culm under high-yield wheat cultivation,and a theoretical basis and for developing technical measures to enhance lodging resistance.

    The environment,especially the minimum temperature,affects summer maize grain yield by regulating ear differentiation and grain development

    Jing ChenBaizhao RenBin ZhaoPeng Liu...
    2227-2241页
    查看更多>>摘要:Ear differentiation,grain development and their interaction with factors in the growing environment,such as temperature,solar radiation and precipitation,greatly influence grain number and grain weight,and ultimately affect summer maize production.In this study,field experiments involving different sowing dates were conducted over three years to evaluate the effects of temperature factors,average solar radiation and total precipitation on the growth process,ear differentiation,fertilization characteristics,grain filling and yield of summer maize varieties with different growth durations.Four hybrids were evaluated in Huang-Huai-Hai Plain(HHHP),China from 2018 to 2020 with five different sowing dates.The results showed that the grain yield formation of summer maize was strongly impacted by the environment from the silking(R1)to milking(R3)stage.Average minimum temperature(ATmin)was the key environmental factor that determined yield.Reductions in the length of the growing season(r=-0.556,P<0.01)and the total floret number on ear(R2=0.200,P<0.001)were found when ATmin was elevated from the emerging(VE)to R1 stage.Both grain-filling rate(R2=0.520,P<0.001)and the floret abortion rate on ear(R2=0.437,P<0.001)showed quadratic relationships with ATmin from the R1 to physiological maturity(R6)stage,while the number of days after the R1 stage(r=-0.756,P<0.01)was negatively correlated with ATmin.An increase in ATmin was beneficial for the promotion of yield when it did not exceeded a certain level(above 23℃ during the R1-R3 stage and 20-21 ℃ during the R1-R6 stage).Enhanced solar radiation and precipitation during R1-R6 increased the grain-filling rate(R2=0.562,P<0.001 and R2=0.229,P<0.05,respectively).Compared with short-season hybrids,full-season hybrids showed much greater suitability for a critical environment.The coordinated regulation of ATmin,ear differentiation and grain development at the pre-and post-silking stages improved maize yield by increasing total floret number and grain-filling rate,and by reducing the floret abortion rate on ear.

    Increasing root-lower characteristics improves drought tolerance in cotton cultivars at the seedling stage

    Congcong GuoHongchun SunXiaoyuan BaoLingxiao Zhu...
    2242-2254页
    查看更多>>摘要:Drought is an important abiotic stress factor in cotton production.The root system architecture(RSA)of cotton shows high plasticity which can alleviate drought-related stress under drought stress(DS)conditions;however,this alleviation is cultivar dependent.Therefore,this study estimated the genetic variability of RSA in cotton under DS.Using the paper-based growth system,we assessed the RSA variability in 80 cotton cultivars at the seedling stage,with 0 and 10%polyethylene glycol 6000(PEG6000)as the control(CK)and DS treatment,respectively.An analysis of 23 above-ground and root traits in the 80 cotton cultivars revealed different responses to DS.On the 10th day after DS treatment,the degree of variation in the RSA traits under DS(5-55%)was greater than that of CK(5-49%).The 80 cultivars were divided into drought-tolerant cultivars(group 1),intermediate drought-tolerant cultivars(group 2),and drought-sensitive cultivars(group 3)based on their comprehensive evaluation values of drought resistance.Under DS,the root length-lower,root area-lower,root volume-lower,and root length density-lower were significantly reduced by 63,71,76,and 4%in the drought-sensitive cultivars compared to CK.Notably,the drought-tolerant cultivars maintained their root length-lower,root area-lower,root volume-lower,and root length density-lower attributes.Compared to CK,the root diameter(0-2 mm)-lower increased by 21%in group 1 but decreased by 3 and 64%in groups 2 and 3,respectively,under DS.Additionally,the drought-tolerant cultivars displayed a plastic response under DS that was characterized by an increase in the root-lower characteristics.Drought resistance was positively correlated with the root area-lower and root length density-lower.Overall,the RSA of the different cotton cultivars varied greatly under DS.Therefore,important root traits,such as the root-lower traits,provide great insights for exploring whether drought-tolerant cotton cultivars can effectively withstand adverse environments.

    Physiological and transcriptome analyses of Chinese cabbage in response to drought stress

    Lin ChenChao LiJiahao ZhangZongrui Li...
    2255-2269页
    查看更多>>摘要:Chinese cabbage is an important leafy vegetable crop with high water demand and susceptibility to drought stress.To explore the molecular mechanisms underlying the response to drought,we performed a transcriptome analysis of drought-tolerant and-sensitive Chinese cabbage genotypes under drought stress,and uncovered core drought-responsive genes and key signaling pathways.A co-expression network was constructed by a weighted gene co-expression network analysis(WGCNA)and candidate hub genes involved in drought tolerance were identified.Furthermore,abscisic acid(ABA)biosynthesis and signaling pathways and their drought responses in Chinese cabbage leaves were systemically explored.We also found that drought treatment increased the antioxidant enzyme activities and glucosinolate contents significantly.These results substantially enhance our understanding of the molecular mechanisms underlying drought responses in Chinese cabbage.

    Melatonin and dopamine alleviate waterlogging stress in apples by recruiting beneficial endophytes to enhance physiological resilience

    Yang CaoPeihua DuYuwei ShangJiahao Ji...
    2270-2291页
    查看更多>>摘要:Melatonin and dopamine can potentially prevent waterlogging stress in apples.The current study investigated the mechanism by which melatonin and dopamine alleviate apple waterlogging stress.This study demonstrated that melatonin and dopamine alleviated waterlogging by removing reactive oxygen species(ROS),and that the nitric oxide(NO)content and nitrate reductase(NR)activity were significantly correlated.Melatonin and dopamine were also found to recruit different candidate beneficial endophytes(melatonin:Novosphingobium,Propionivibrio,and Cellvibrio;dopamine:Hydrogenophaga,Simplicispira,Methyloversatilis,Candidatus_Kaiserbacteria,and Humicola),and these endophytes were significantly and positively correlated with plant growth.Network analyses showed that melatonin and dopamine significantly affected the endophytic bacterial and fungal communities under waterlogging stress.The metabolomic results showed that melatonin and dopamine led to waterlogging resistance by upregulating the abundance of beneficial substances such as amino acids,flavonoids,coumarins,and organic acids.In addition,melatonin and dopamine regulated the physicochemical properties of the soil,which altered the endophyte community and affected plant growth.The co-occurrence network demonstrated close and complex relationships among endophytes,metabolites,soil,and the plants.Our results demonstrate that melatonin and dopamine alleviate waterlogging stress in apples by recruiting beneficial endophytes to enhance physiological resilience.This study provides new insights into how melatonin and dopamine alleviate stress and a theoretical basis for synergistic beneficial microbial resistance to waterlogging stress.

    Quantitative trait loci identification reveals zinc finger protein CONSTANS-LIKE 4 as the key candidate gene of stigma color in watermelon(Citrullus lanatus)

    Shuang PeiZexu WuZiqiao JiZheng Liu...
    2292-2305页
    查看更多>>摘要:Stigma color is a critical agronomic trait in watermelon that plays an important role in pollination.However,there are few reports on the regulation of stigma color in watermelon.In this study,a genetic analysis of the F2 population derived from ZXG1553(P1,with orange stigma)and W1-17(P2,with yellow stigma)indicated that stigma color is a quantitative trait and the orange stigma is recessive compared with the yellow stigma.Bulk segregant analysis sequencing(BSA-seq)revealed a 3.75 Mb segment on chromosome 6 that is related to stigma color.Also,a major stable effective QTL Clqsc6.1(QTL stigma color)was detected in two years between cleaved amplified polymorphic sequencing(CAPS)markers Chr06_8338913 and Chr06_9344593 spanning a~1.01 Mb interval that harbors 51 annotated genes.Cla97C06G117020(annotated as zinc finger protein CONSTANS-LIKE 4)was identified as the best candidate gene for the stigma color trait through RNA-seq,quantitative real-time PCR(qRT-PCR),and gene structure alignment analysis among the natural watermelon panel.The expression level of Cla97C06G117020 in the orange stigma accession was lower than in the yellow stigma accessions with a significant difference.A nonsynonymous SNP site of the Cla97C06G117020 coding region that causes amino acid variation was related to the stigma color variation among nine watermelon accessions according to their re-sequencing data.Stigma color formation is often related to carotenoids,and we also found that the expression trend of CICHYB(annotated as β-carotene hydroxylase)in the carotenoid metabolic pathway was consistent with Cla97C06G117020,and it was expressed in low amounts in the orange stigma accession.These data indicated that Cla97C06G117020 and CICHYB may interact to form the stigma color.This study provides a theoretical basis for gene fine mapping and mechanisms for the regulation of stigma color in watermelon.