首页|数据挖掘算法在中药方剂研究中的应用现状

数据挖掘算法在中药方剂研究中的应用现状

扫码查看
近年来,数据挖掘算法在中药领域的科研中得到了广泛应用.采用数据挖掘算法可处理和分析中药方剂中的多层次数据,并对其作用机制提供合理解释.这一方法现已较好地应用于中医药的配伍规律和高频药组的挖掘中,提高了临床诊断、靶点筛选和新药研究的可靠性和准确性.本文对147篇中药方剂研究中运用数据挖掘算法的文献进行了整理与分析,结果表明,数据挖掘算法在中药方剂作用机制研究、中药方剂量效研究、挖掘核心药对/药组、挖掘"方-药-证"间的关系、发现新方剂和挖掘配伍规律这6个子领域中发挥了独特优势,尤以关联规则和聚类分析算法最具有代表性.
Application of data mining algorithms in research on traditional Chinese medicine formula
In recent years,data mining algorithms have been widely employed in scientific research within the field of traditional Chinese medicine(TCM).The data mining algorithms are used to effectively handle and analyze the complex data in TCM formulas,providing a rational explanation for the mechanism of action.This method has proven particularly useful in uncovering patterns of compatibility and frequent combinations of herbs in TCM,thereby enhancing the reliability and accuracy of clinical diagnosis,target screening,and the study of new drugs.This paper reviews and analyzes 147 papers on TCM formula research that utilize data mining algorithms.The results indicate that data mining algorithms play a unique advantage in six sub-areas,including the study on the mechanism of action in TCM formula,the dose-efficacy of TCM formulas,the identification of core drugs pairs/groups,mining the relationships among"formulas-drug-symptom",the discovery of new formulas,and mining the compatibility law.Notably,association rules and clustering algorithms are the most representative.

data mining algorithmstraditional Chinese medicine formulabibliometrics analysisapplication

李蕙质、周小玲、杨玉杰、章新友

展开 >

江西中医药大学计算机学院,南昌 330004

数据挖掘算法 中药方剂 文献计量法 应用

国家自然科学基金江西省中医药局科技重点项目江西省中医药局癌病方证信息数据挖掘重点研究室项目江西中医药大学校级科技创新团队立项项目

823609922022Z007科研字[2022]16号CXTD22015

2024

中国药房
中国医院协会,中国药房杂志社

中国药房

CSTPCD北大核心
影响因子:0.956
ISSN:1001-0408
年,卷(期):2024.35(1)
  • 1
  • 35